Effects of Storage Duration and Temperature of Human Plasma and Serum on Red Blood Cell Aggregation and Shape


Platelet-free plasma of human blood (sodium citrate and EDTA as an anticoagulant) and serum were stored at 4°C, room temperature (25°C) and at 37°C for 24 hours. RBC aggregation decreased after incubation of plasma and serum at 37°C for 4 hours. The RBC shape was changed at the same time: discocytes transformed to echinocytes. Storage of plasma and serum at 4°C and room temperature did not lead to significant alterations of RBC aggregation. The RBC shape did not change in influence of such plasma and serum. The most considerable decrease of RBC aggregation and change of their shapes were observed in the plasma and serum incubated at 37°C for 24 hours. Dilution of incubated plasma by fresh plasma led to consistent restoration of erythrocyte shape and their aggregation.

Share and Cite:

Sheremet’ev, Y. , Popovicheva, A. and Levin, G. (2013) Effects of Storage Duration and Temperature of Human Plasma and Serum on Red Blood Cell Aggregation and Shape. Open Journal of Biophysics, 3, 212-216. doi: 10.4236/ojbiphy.2013.34026.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] O. K. Baskurt and H. J. Meiselman, “Cellular Determinants of Low-Shear Blood Viscosity,” Biorheology, Vol. 34, No. 3, 1977, pp. 235-247. http://dx.doi.org/10.1016/S0006-355X(97)00027-9
[2] R. W. Rampling, H. J. Meiselman, B. Neu and O. K. Baskurt, “Influence of Cell-Specific Factors on Red Blood Cell Aggregation,” Biorheology, Vol. 41, No. 2, 2004, pp. 91-112.
[3] G. Barshtein, R. Ben-Ami and S. Yedgar, “Role of Red Blood Cell Flow Behavior in Hemodynamics and Hemostasis,” Expert Review of Cardiovascular Therapy, Vol. 5, No. 4, 2007, pp. 743-752. http://dx.doi.org/10.1586/14779072.5.4.743
[4] T. Kirschkamp, H. Schmid-Schonbein, A. Weinberger and R. Smeets, “Effects of Fibrinogen and a2-Macroglobulin and Their Apheretic Elimination on General Blood Rheology and Rheological Characteristics of Red Blood Cell Aggregates,” Therapeutic Apheresis and Dialysis, Vol. 12, No. 5, 2008, pp. 360-367. http://dx.doi.org/10.1111/j.1744-9987.2008.00610.x
[5] N. Maeda, M. Seike, S. Kume, T. Takaku and T. Shiga, “Fibrinogen-Induced Erythrocyte Aggregation: Erythrocyte-Binding Site in the Fibrinogen Molecule,” Biochimica et Biophysica Acta, Vol. 904, No. 1, 1987, pp. 81-91. http://dx.doi.org/10.1016/0005-2736(87)90089-7
[6] M. M. Uyuklu, M. Cengiz, P. Ulker, T. Hever, J. Tripette, P. Connes, N. Nemeth, H. J. Meiselman and O. K. Baskurt, “Effects of Storage Duration and Temperature of Human Blood on Red Cell Deformability and Aggregation,” Clinical Hemorheology and Microcirculation, Vol. 41, No. 4, 2009, pp. 269-278.
[7] N. Nemeth, O. K. Baskurt, H. J. Meiselman, F. Kiss, M. Uyuklu, T. Hever, E. Sajtos, P. Kenyeres, K. Toth, I. Furka and I. Miko, “Storage of Laboratory Animal Blood Samples Causes Hemorheological Alterations: Inter-Species Differences and the Effects of Duration and Temperature,” Korea-Australia Rheology Journal, Vol. 41, No. 4, 2009, pp. 269-278.
[8] H.-J. Lim, J.-H. Nam, B.-K. Lee, J.-S. Suh and S. Shin, “Alteration of Red Blood Cell Aggregation during Blood Storage,” Korea-Australia Rheology Journal, Vol. 23, No. 2, 2011, pp. 67-70. http://dx.doi.org/10.1007/s13367-011-0009-3
[9] W. H. Reinhart, G. M. Baerlocher, T. Cerny, G. Rh. Owen, H. J. Meiselman and J. H. Beer, “Ifosfamide-Induced Stomatocytosis and Mesna-Induced Echinocytosis,” European Journal of Haematology, Vol. 62, No. 4, 1999, pp. 223-230. http://dx.doi.org/10.1111/j.1600-0609.1999.tb01751.x
[10] W. H. Reinhart, A. Singh and P. W. Straub, “Red Blood Cell Aggregation and Sedimentation: The Role of the Cell Shape,” British Journal of Haematology, Vol. 73, No. 4, 1989, pp. 551-556. http://dx.doi.org/10.1111/j.1365-2141.1989.tb00296.x
[11] H. Schmid-Schonbein, J. von Gosen, L. Heinich, H. J. Klose and E. Volger, “Counter-Rotating ‘Rheoscope Chamber’ for the Study of the Microrheology of Blood Cell Aggregation by Microscopic Observation and Microphotometry,” Microvascular Research, Vol. 6, No. 3, 1973, pp. 366-376. http://dx.doi.org/10.1016/0026-2862(73)90086-1
[12] G. Ya. Levin, A. P. Modin, S. Yu. Kudritskiy and L. N. Sosnina, “The Device for Investigation of Platelet Aggregation,” Patent 2278381, Russian Federation, 2006.
[13] S. Shin, M. S. Park, J. H. Jang, Y. H. Ku and J. S. Suh, “Measurement of Red Blood Cell Aggregation by Analysis of Light Transmission in a Pressure-Driven Slit Flow System,” Korea-Australia Rheology Journal, Vol. 16, No. 2, 2004, pp. 129-134.
[14] J. A. Aoki, A. Taira, Y. Takanezawa, Y. Kishi, K. Hama, T. Kishimoto, K. Mizuno, K. Saku, R. Taguchi and H. Arai, “Serum Lysophosphatidic Acid Is Produced through Diverse Phospholipase Pathways,” Journal of Biological Chemistry, Vol. 277, No. 50, 2002, pp. 48737-48744. http://dx.doi.org/10.1074/jbc.M206812200
[15] S.-M. Chung, O.-N. Bae, K.-M. Lim, J.-Y. Noh, M.-Y. Lee, Y.-S. Jung and J.-H. Chung, “Lysophosphatidic Acid Induces Thrombogenic Activity through Phosphatidylserine Exposure and Procoagulant Microvesicle Generation in Human Erythrocytes,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 27, No. 2, 2007, pp. 414- 421. http://dx.doi.org/10.1161/01.ATV.0000252898.48084.6a
[16] F. A. Carvalho, S. de Oliveira, T. Freitas, S. Goncalves and N. C. Santos, “Variations on Fibrinogen-Erythrocyte Interactions during Cell Aging,” PLoS One, Vol. 6, No. 3, 2011, pp. 1-8. http://dx.doi.org/10.1371/journal.pone.0018167
[17] D. Lominadze and W. L. Dean, “Involvement of Fibrinogen Specific Binding in Erythrocyte Aggregation,” FEBS Letters, Vol. 577, No. 1-3, 2002, pp. 41-44. http://dx.doi.org/10.1016/S0014-5793(02)02575-9
[18] F. A. Carvalho, S. Connell, G. Miltenberger-Miltenyi, S. V. Pereira, A. Tavares, R. A. Ariens and N. C. Santos, “Atomic Force Microscopy-Based Molecular Recognition of a Fibrinogen Receptor on Human Erythrocytes,” ACS Nano, Vol. 4, No. 8, 2010, pp. 4609-4620. http://dx.doi.org/10.1021/nn1009648
[19] Y. Marikovsky, C. S. Brown, R. S. Weinstein and H. H. Wortis, “Effects of Lysolecithin on the Surface Properties of Human Erythrocytes,” Experimental Cell Research, Vol. 98, No. 2, 1976, pp. 313-324. http://dx.doi.org/10.1016/0014-4827(76)90443-2
[20] Y. Marikovsky, R. S. Weinstein, E. Skutelsky and D. Danon, “Changes of Cell Shape and Surface Charge Topography in ATP-Depleted Human Red Blood Cell,” Mechanisms of Ageing and Development, Vol. 29, No. 3, 1985, pp. 309-316. http://dx.doi.org/10.1016/0047-6374(85)90070-3

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.