Electromagnetic Study of MW-Class HTS Wind Turbine Generators

Abstract

High temperature superconductor (HTS) technology enables a significant reduction in the size and weight of MW-class generators for direct-drive wind turbine systems and reduce the cost of clean energy relative to conventional copper an permanent-magnet-based generators and gearbox. Using MAXWELL, we studied MW class superconducting synchronous machines. By comparison the weight, we concluded that HTS wind turbine with rotor iron is the heaviest and HTS wind turbine without rotor iron and stator teeth is the lightest. By comparison the flux density, HTS wind turbine without rotor iron is the least and HTS wind turbine without rotor iron and stator teeth is the largest. By comparison the cost, HTS wind turbine with rotor iron is the highest and the other two is almost the same. HTS wind turbine without rotor iron and stator teeth is the best type.

Share and Cite:

Y. Liang, "Electromagnetic Study of MW-Class HTS Wind Turbine Generators," Energy and Power Engineering, Vol. 5 No. 4B, 2013, pp. 373-376. doi: 10.4236/epe.2013.54B072.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. B. Abrahamsen, N. Mijatovic, E. Seiler, et al., “Superconducting Wind Turbine Generators,” Superconductor Science and Technology, Vol. 23, 2010, pp. 1-8. doi:10.1088/0953-2048/23/3/034019
[2] S. Gregory, “Progress on High Temperature Superconductor Propulsion Motors and Direct Drive Wind Generators,” the 2010 International Power Electronics Conference, Sapporo, 2010.
[3] L. Clive and J. Müller, “A Direct Drive Wind Turbine HTS Generator,” IEEE Power Engineering Society General Meeting, Tampa, Florida, USA, 2007, pp. 1-8.
[4] X. T. Duan, X. Y. Zhang, J. Zhang, et al., “Finite Element Based Electromagnetic Field Simulation and Analysis of Doubly Fed Induction Generator,” Power System Technology, Vol. 36, February 2012, pp. 231-236.
[5] H. Li and Z. Chen, “Overview of Difference Wind Generator Systems and Their Comparisons,” IET Renewable Power Generation, Vol. 2, February 2008, pp. 123-138. doi:10.1049/iet-rpg:20070044
[6] S. He, W. Q. Wang, X. Y. Zhang, et al., “Electromagnetic Field Calculation of High Capacity Direct-Driven Permanent Magnet Synchronous Wind Power Generator Based on Finite Element Method,” Power System Technology, Vol. 34, March 2010, pp. 157-161.
[7] H. Ohsaki, Y. Terao and M. Sekino, “Wind Turbine Generators using Superconducting Coils and Bulks,” Journal of Physics, Vol. 234, 2010, pp. 1-6. doi:10.1088/1742-6596/234/3/032043
[8] A. B. Abrahamsen, N. Mijatovic, E. Seiler, et al., “Design Study of 10 kW Superconducting Generator for Wind Turbine Applications,” IEEE Transactions on Applied Superconductivity, Vol. 19, 2009, pp. 678-1681. doi:10.1109/TASC.2009.2017697
[9] K. S. Ship and J. K. Sykulski, “Feild Simulation Studies for a High Temperature Superconducting Synchronous Generator with a Coreless Rotor,” IEE Proceedings of Science, Measurements and Technology, Vol. 151, pp. 414-418.
[10] M. K. Al-Mosawi, C. Beduz and Y. Yang, “Construction of a 100 kVA High Temperature Superconducting Synchronous Generator,” IEEE Transactions on Applied Superconductivity, Vol. 15, 2005, pp. 2182-2185. doi:10.1109/TASC.2005.849607
[11] H. M. Wen, B. Wendell, G. Kevin, et al., “Performance Test of a 100 kW HTS Generator Operating at 67K-77K,” IEEE Transactions on Applied Superconductivity, Vol. 9, 2009, pp. 652-1655.
[12] X. H. Li, Y. G. Zhou, L. Han, et al., “Design of a High Temperature Superconducting Generator for Wind Power Applicaton,” IEEE Transactions on Applied Superconductivity, Vol. 21, 2011, pp. 155-1158.
[13] K. F. Goddard, B. Lukasik and J. K. Sykulski, “Alternative Designs of High-Temperature Superconducting Synchronous Generators,” IEEE Transactions on Applied Superconductivity, Vol. 19, 2009, pp. 3805-3811. doi:10.1109/TASC.2009.2031626
[14] H. M. Wen, W. Bailey, M. K. Al-Mosawi, et al., “Further Testing of an "Iron-Cored" HTS Synchronous Generator Cooled by Liquid Air,” IEEE Transactions on Applied Superconductivity, Vol. 21, 2011, pp. 1163-1166. doi:10.1109/TASC.2010.2093487
[15] S. Hidehiko, T. Teppei, M. Takaya, et al., “Development of an Axial Flux Type PM Synchronous Motor with the Liquid Nitrogen Cooled HTS Armature Windings,” IEEE Transactions on Applied Superconductivity, Vol. 17, 2007, pp.1637-1640.
[16] B. Lukasik, K. F. Goddard and J. K. Sykulski, “Finite Element Assisted Method of Estimating Equivalent Circuit Parameters for a Superconducting Synchronous Generator with a Coreless Rotor,” IEEE Transactions on Magnetics, Vol. 45, 2009, pp. 1226-1229. doi:10.1109/TMAG.2009.2012572
[17] K. S. Ship, K. F. Goddard and J. K. Sykulski, “Field Optimization in a Synchronous Generator with High Temperature Superconducting Field Winding and Magnetic Core,” IEE Proceedings of Science, Measurement and Technology, Vol. 149, 2002, pp. 194-198. doi:10.1049/ip-smt:20020641
[18] B. Lukasik, K. F. Goddard and J. K. Sykulski, “Finite-element Assisted Method to Reduce Harmonic Content in the Air-gap Flux Density of a High-temperature Superconducting Coreless Rotor Generator,” IET Science, Measurement and Technology, Vol. 12, 2008, pp. 485-492.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.