Hygroscopic Behavior of Lyophilized Powder of Grugru Palm (Acrocomia aculeata)

Abstract

The objective of this study was to determine adsorption isotherms and hygroscopic behavior of lyophilized powder from grugru palm. The powders of grugru palm were obtained by lyophilization process without maltodextrin (T1) and with 8% matodextrin (T2). The experimental data were obtained through the static gravimetric method at temperatures (25℃, 30℃, 35℃ and 40℃), with different saturated solutions of salts. The models of GAB, BET, Henderson and Oswin were fitted to experimental data. The values obtained for hygroscopicity were 7.68% and 6.86% and the degrees of caking were 0.33% and 0.09% for T1 and T2, respectively. Mathematical models of adsorption isotherms for grugru palm powders can be classified as Type III. The GAB and Oswin models represented better the behavior of isotherms for T1 and T2. Grugru palm powder showed an increase in the humidity of the monolayer Xm along with increasing temperature. The grugru palm powder demonstrated to be a non-hygroscopic product, non-caking features.

Share and Cite:

D. Oliveira, E. Clemente, M. Amorim Afonso and J. Correia da Costa, "Hygroscopic Behavior of Lyophilized Powder of Grugru Palm (Acrocomia aculeata)," American Journal of Analytical Chemistry, Vol. 4 No. 10C, 2013, pp. 1-7. doi: 10.4236/ajac.2013.410A3001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. R. Clement, E. Lleras Pérez and J. Van Leeuwen, “O Potencial das Palmeiras Tropicais no Brasil: Acertos e Fracassos das últimas d’écadas,” Agrociencias, Vol. 9, No. 1-2, 2005, pp. 67-71.
[2] Ministério da Saúde, “Alimentos Regionais Brasileiros,” Ministério da Saúde, Brasília, 2002.
[3] M. I. L. Ramos, M. M. Ramos Filho, P. A. Hiane, J. A. Braga Neto and E. M. A. Siqueira, “Qualidade Nutricional da Polpa de Bocaiúva Acrocomia aculeata (Jacq.) Lodd,” Ciencia e Tecnologia de Alimentos, Vol. 28, 2008, pp. 90-94.
[4] E. C. Soares, G. S. F. Oliveira, G. A. Maia, J. C. S. Monteiro, A. Silva Jr. and M. S. S. Filho, “Desidratacao da Polpa de Acerola (Malpighia emarginata D.C.) Pelo Processo Foam-Mat,” Ciencia e Tecnologia de Alimentos, Vol. 21, No. 2, 2001, pp. 164-170.
http://dx.doi.org/10.1590/S0101-20612001000200008
[5] P. M. A. Gomes, R. M. F. Figueiredo and A. J. M. Queiroz, “Armazenamento da Polpa de Acerola em Po a Temperatura Ambiente,” Ciencia e Tecnologia de Alimentos, Vol. 24, No. 3, 2004, pp. 384-389.
http://dx.doi.org/10.1590/S0101-20612004000300014
[6] J. T. C. L.Toneli, K. J. Park, F. E. X. Murr and A. A. Negreiros, “Efeito da Umidade Sobre a Microestrutura da Inulina em Po,” Ciencia e Tecnologia de Alimentos, Vol. 28, No. 1, 2008, pp. 122-131.
http://dx.doi.org/10.1590/S0101-20612008000100018
[7] M. Mathlouthi and M. B. Rogé, “Water Vapour Sorption Isotherms and the Caking of Food Powders,” Food Chemistry, Vol. 82, No. 1, 2003, pp. 61-71.
http://dx.doi.org/10.1016/S0308-8146(02)00534-4
[8] F. Kaymak-Ertekin and A. Gedik, “Sorption Isotherms Andisosteric Heat of Sorption for Grapes, Apricots, Apples and Potatoes,” LWT-Food Science and Technology, Vol. 37, No. 4, 2004, pp. 429-438.
http://dx.doi.org/10.1016/j.lwt.2003.10.012
[9] A. Jamali, M. Kouhila, L. A. Mohamed, J. T. Jaouhari and N. Abdenouri, “Sorption Isotherms of Chenopodium Ambrosioides, Leaves at Three Temperatures,” Journal of Food Engineering, Vol. 72, No. 1, 2006, pp. 77-84.
http://dx.doi.org/10.1016/j.jfoodeng.2004.11.021
[10] W. Wolf, W. E. L. Spiess and G. Jung, “Standarization of Isotherm Measurements,” In: D. Simatos and J. L. Multon, Eds., Properties of Water in Foods, Martinus Nijhoff, Leiden, 1985, pp. 661-679.
http://dx.doi.org/10.1007/978-94-009-5103-7_40
[11] L. Greenspan, “Humidity Fixed Points of Binary Satured Aqueuos Solutions,” Journal of Research of the National Bureau of Standards-A, Physics and Chemistry, Vol. 81, No. 1, 1977, pp. 89-96.
[12] Statsoft, “Statistica for Window, Computer Programa Manual,” 7th Edition, Statsoft Inc., Tulsa, 2007.
[13] C. Van Den Berg and S. Bruin, “Water Activity and Its Estimation in Food Systems: Theoretical Aspects,” In: L. B. Rockland and G. E. Stewart, Eds., Theoretical Aspects, Academic Press, New York, 1981, pp. 45-58.
[14] S. Brunauer, P. H. Emmett and E. Teller, “Adsorption of Gases in Multimolecular Layer,” Journal of the American Chemistry Society, Vol. 60, No. 2, 1938, pp. 309-319.
http://dx.doi.org/10.1021/ja01269a023
[15] S. M. Henderson, “A Basic Concept of Equilibrium Moisture,” Agricultural Engineering, Vol. 33, 1952, pp. 29-32.
[16] C. R. Oswin, “The Kinetics of Packing Life. III. The Isotherm,” Journal of the Society of Chemical Industry, Vol. 65, No. 12, 1946, pp. 419-423.
http://dx.doi.org/10.1002/jctb.5000651216
[17] H. A. Iglesias and J. Chirife, “A Model for Describing the Water Sorption Behaviour of Foods,” Journal of Food Science, Vol. 41, No. 5, 1976, pp. 984-992.
http://dx.doi.org/10.1111/j.1365-2621.1976.tb14373.x
[18] GEA Niro Research Laboratory, “Analytical Methods Dry Milk Products. GEA Niro Analytical Methods, Methods 14 a and 15 a,” Soeborg, 2003.
[19] S. S. H. Rizvi, “Thermodynamic Properties of Foods in Dehydration,” In: M. A. Rao and S. S. H. Rizvi, Eds., Engineering Properties of Foods, Marcel Dekker, New York, 1995, pp. 239-313.
[20] R. J. Aguerre, C. Suarez and P. E. Viollaz, “New BET Type Multilayer Sorption Isotherms Part II: Modelling Water Sorption in Foods,” LWT-Food Science and Technology, Vol. 22, No. 4, 1989, pp. 192-195.
[21] T. P. Labuza, A. Kaanane and J. Y. Chen, “Effects of Temperature on the Moisture Sorption Isotherms and Water Activity Shift of Two Dehydrated Foods,” Journal of Food Science, Vol. 50, No. 3, 1985, pp. 385-392.
[22] V. S. Oliveira, M. R. A. Afonso and J. M. C. Costa, “Caracterizacao Físico-Química e Comportamento Higroscopico de Sapoti Liofilizado,” Revista Ciencia Agronomica, Vol. 42, No. 2, 2011, pp. 342-348.
http://dx.doi.org/10.1590/S1806-66902011000200012
[23] C. D. Ferreira and R. S. Pena, “Comportamento Higroscopico da Farinha de Pupunha (Bactris gasipaes),” Ciencia e Tecnologia de Alimentos, Vol. 23, No. 2, 2003, pp. 251-255.
http://dx.doi.org/10.1590/S0101-20612003000200025
[24] Y. C. Silva, M. E. R. M. C. Mata and M. E. M. Duarte, “Atividade de água em Po Microencapsulado com Amido Modificado: Estudo de Dois Modelos Matemáticos,” Simposio Brasileiro de Pos Colheita de Frutos Tropicais, Joao Pessoa, 2005.
[25] A. M. Goula, T. D. Karapantsios, D. S. Achilias and K. G. Adamopoulos, “Water Sorption Isotherms and Glass Transition Temperature of Spray Dried Tomato Pulp,” Journal of Food Engineering, Vol. 85, No. 1, 2008, pp. 73-83. http://dx.doi.org/10.1016/j.jfoodeng.2007.07.015
[26] A. H. Al-Muhtaseb, W. A. M. McMinn and T. R. A. Magee, “Water Sorption Isotherms of Starch Powders Part 1: Mathematical Description of Experimental Data,” Journal of Food Engineering, Vol. 61, No. 3, 2004, pp. 297-307.
http://dx.doi.org/10.1016/S0260-8774(03)00133-X
[27] A. H. Al-Muhtaseb, W. A. M. McMinn and T. R. A. Magee, “Moisture Sorption Isotherm Characteristics of Food Products: A Review,” Food and Bioproducts Processing, Vol. 80, No. 2, 2002, pp. 118-128.
[28] A. H. Vieira, R. M. F. Figueiredo and A. J. M. Queiroz, “Isotermas de Adsorcao de Umidade da Pitanga em Po,” Revista de Biologia e Ciencias da Terra, Vol. 7, No. 1, 2007, pp. 11-20.
[29] A. Cova, A. J. Sandoval, V. Balsamo and A. J. Müller, “The Effect of Hydrophobic Modifications on the Adsorption Isotherms of Cassava Starch,” Carbohydrate Polymers, Vol. 81, No. 3, 2010, pp. 660-667.
http://dx.doi.org/10.1016/j.carbpol.2010.03.028
[30] A. Talla, Y. Jannot, G. E. Nkeing and J. R. Puigalli, “Experimental Determination and Modeling of Sorption Isotherms of Tropical Fruits: Banana, Mando and Pineapple,” Drying Technology: An International Journal, Vol. 23, No. 7, 2005, pp. 1477-1498.
http://dx.doi.org/10.1081/DRT-200063530
[31] A. L. Gabas, V. R. N. Telis, P. J. A. Sobral and J. Telis-Romero, “Effect of Maltodextrin and Arabic Gum in Water Vapor Sorption Thermodynamic Properties of Vacuum Dried Pineapple Pulp Powder,” Journal of Food Engineering, Vol. 82, No. 2, 2007, pp. 246-252.
http://dx.doi.org/10.1016/j.jfoodeng.2007.02.029
[32] M. R. Silva, D. B. C. L. Lacerda, G. G. Santos and D. M. O. Martins, “Caracterizacao Química de Frutos Nativos do Cerrado,” Ciencia Rural, Vol. 38, No. 6, 2008, pp. 1790-1793.
http://dx.doi.org/10.1590/S0103-84782008000600051
[33] A. L. S. Oliveira, M. A. Torres, S. J. Freire, T. B. Pereira, T. F. Santos, V. O. Silva and L. C. Azevedo, “Caracterizacao Físico-Química da Macaúba (Acrocomia aculeata Jacq. Lodd.) Cultivada No Sertao Pernambucano,” Anais do, IV Congresso de Pesquisa e Inovacao da Rede Norte e Nordeste de Educacao Tecnologica, Belém, Para, 2009.
[34] J. M. Aguilera, J. M. Del Valle and M. Karel, “Caking Phenomena in Amorphous Food Powder,” Trends in Food Science & Technology, Vol. 6, No. 5, 1995, pp. 149-155.
http://dx.doi.org/10.1016/S0924-2244(00)89023-8
[35] D. M. Oliveira, E. Clemente, J. M. C. Costa, “Hygroscopic Behavior and Degree of Caking of Grugru Palm (Acrocomia aculeata) Powder,” Journal of Food Science and Technology, Vol. on line, 2012, pp. 1-7.
[36] J. M. C. Costa, M. F. D. Medeiros and A. L. M. L. Mata, “Isotermas de Adsorcao de Pos de Beterraba (Beta vulgaris L.), Abobora (Cucurbita moschata) e Cenoura (Daucus carota) Obtidos Pelo Processo de Secagem em Leito de Jorro: Estudo Comparativo,” Revista Ciencia Agronomica, Vol. 34, No. 1, 2003, pp. 39-43.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.