[1]
|
Damon, P.E. et al. (1989) Radiocarbon dating of the Shroud of Turin. Nature, 337, 611-615.
http://dx.doi.org/10.1038/337611a0
|
[2]
|
Ball, P. (2008) Material witness: Shrouded in mystery. Nature Materials, 7, 349-350.
http://dx.doi.org/10.1038/nmat2170
|
[3]
|
Pellicori, S.F. (1980) Spectral properties of the Shroud of Turin. Applied Optics, 19, 1913-1920.
http://dx.doi.org/10.1364/AO.19.001913
|
[4]
|
Carter, G.F. (1984) Formation of the image on the Shroud of Turin by x-Rays: A new hypothesis. Archaeological Chemistry, 425-446.
|
[5]
|
Miller, V.D. and Pellicori, S.F. (1981) Ultraviolet fluorescence photography of the Shroud of Turin. Journal of Biological Photography, 3, 71-85.
|
[6]
|
Rogers, N. and Arnoldi, A. (200) Scientific method applied to the Shroud of Turin. University of California Los Alamos National Laboratory Los Alamos.
http://www.shroud.com/pdfs/rogers2.pdf
|
[7]
|
Morris et al. (1980) X-ray fluorescence investigation of the Shroud of Turin. X-Ray Spectrometry, 9, 40-47.
http://dx.doi.org/10.1002/xrs.1300090203
|
[8]
|
G. Fanti and M. Moroni (2002) Comparison of luminance between face of turin shroud man and experimental results. The Journal of Imaging Science and Technology, 46, 142-154.
|
[9]
|
Adler, A.D. and Whanger, A. (1997) Concerning the side strip on the Shroud of Turin.
http://www.shroud.com/adler2.htm
|
[10]
|
Mills, A. (1995) Image formation on the Shroud of Turin. Interdisciplinary Science Reviews, 4, 319-326.
http://dx.doi.org/10.1179/030801895794105406
|
[11]
|
Fanti, G., Lattarulo, F. and Scheuermann, O. (2005) Body image formation hypotheses based on corona discharge.
http://www.dim.unipd.it/fanti/corona.pdf
|
[12]
|
Maggiolo, F. The double superficiality of the frontal image of the Turin Shroud. Journal of Optics, 6, 491-503.
http://dx.doi.org/10.1088/1464-4258/6/6/001
|
[13]
|
Heller, J.H. and Adler, A.D. (1980) Blood on the Shroud of Turin. Applied Optics, 19, 2742-2744.
http://dx.doi.org/10.1364/AO.19.002742
|
[14]
|
Heller, J.H. and Adler, A.D. (1981) A chemical investigation of the Shroud of Turin. Canadian Forensic Society Scientific Journal, 14, 81-103.
|
[15]
|
Bollone, P.I. and Gaglio, A. (1984) Demonstration of blood, aloes and myrrh on the Holy Shroud with immunofluorescence techniques. Shroud Spectrum International, 13, 38.
|
[16]
|
Diaz, J., Jaramillo, N. and Murillo, M. (2007) Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order. PLoS ONE, 2, e1282.
|
[17]
|
Diaz, J.M. and Murillo (2009) Framework of collagen type I vasoactive vessels structuring invariant geometric attractor in cancer tissues: Insight into biological magnetic fields. PLoS ONE, 4, e4506.
http://dx.doi.org/10.1371/journal.pone.0004506
|
[18]
|
Diaz, J.M. and Murillo, B.A. (2011) Intercellular cancer collisions generate an ejected crystal comet tail effect with fractal interface embryoid body reassembly transformation. Cancer Management and Research, 3,143-155.
http://dx.doi.org/10.2147/CMAR.S17402
|
[19]
|
Diaz, J.M. and Murillo (2012) Phenotype characterization of embryoid body structures generated by a crystal comet effect tail in an intercellular cancer collision scenario. Cancer Management and Research, 4, 9-21.
http://dx.doi.org/10.2147/CMAR.S25810
|
[20]
|
Diaz, J. (2013) Electromagnetic field released in collision impact events generate in the matrix interface fractal scalable invariant geometric triangular chiral hexagonal structures. Open Journal of Geology, 3, 187-200.
http://dx.doi.org/10.4236/ojg.2013.33022
|
[21]
|
Dicke, R.H. (1953) The effect of collisions upon the doppler width of spectral lines. Physical Reviews, 89, 472473. http://dx.doi.org/10.1103/PhysRev.89.472
|
[22]
|
Kristensen, D.M., Kalisz, M. and Nielsen, J.H. (2005) Cytokine signalling in embryonic stem cells. Acta Pathologica, Microbiologica et Inmunologica Scandinava, 113, 11-12.
|
[23]
|
Wozney et al. (1988) Novel regulators of bone formation: Molecular clones and activities. Science, 242, 1528-1534.
|
[24]
|
Varnum-Finney et al. (2000) Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Medicine, 11, 12781281. http://dx.doi.org/10.1038/nature02040
|
[25]
|
Spyros et al. (1999) Notch signaling: Cell fate control and signal integration in development (Review). Science, 284, 770-776.
|
[26]
|
Gaiano, N.G. and Fishell (2002) The role of notch in promoting glial and neural stem cell fates. Annual Review of Neuroscience, 25, 471-490.
|
[27]
|
Bolós, V., Grego-Bessa, J. and de la Pompa, J.L. (2007) Notch signaling in development and cancer. Endocrine Reviews, 28, 339-344.
http://dx.doi.org/10.1210/er.2006-0046
|