[1]
|
R. Poggie, “Wear of Materials,” Journal of Materials Sci ence and Technology, Vol. 7, No. 2, 1991, pp. 387-406.
|
[2]
|
A. Lima, “Hard Turning: AISI 4340 High Strength Low Alloy Steel and AISI D2 Cold Work Tool Steel,” Journal of Materials Processing Technology, Vol. 169, No. 3, 2005, pp. 388-395.
http://dx.doi.org/10.1016/j.jmatprotec.2005.04.082
|
[3]
|
S. Herbert, “Metal Cutting and High Speed Machining,” 2nd Edition, Springer, New York, 1994.
|
[4]
|
G. Brain, “Manufacturing Surface Technology,” 3rd Edi tion, Taylor and Francis Inc., London, 2001.
|
[5]
|
L. Bourithisa, “Comparison of Wear Properties of Tool Steels AISI D2 and O1 with the Same Hardness,” Tri bology International, Vol. 39, No. 6, 2006, pp. 479-489.
http://dx.doi.org/10.1016/j.triboint.2005.03.005
|
[6]
|
L. Zler, “Theoretical and Experimental Determination of Tool Life in Hot Machining of Austenitic Manganese Steel,” International Journal of Machine Tools and Ma nufacture, Vol. 41, No. 2, 2001, pp. 163-172.
http://dx.doi.org/10.1016/S0890-6955(00)00077-8
|
[7]
|
J. A. Sanchez, “Plasma Assisted Milling Heat-Resistant Superalloys,” Journal of Manufacturing Science and En gineering, Vol. 126, No. 2, 2004, pp. 274-285.
http://dx.doi.org/10.1115/1.1644548
|
[8]
|
S. Sun, M. Brandt and M. Dargusch, “Thermally En hanced Machining of Hard-to-Machine Materials,” Inter national Journal of Machine Tools and Manufacture, Vol. 50, No. 8, 2010, pp. 663-680.
http://dx.doi.org/10.1016/j.ijmachtools.2010.04.008
|
[9]
|
M. Anderson, R. P. Yung and C. Shin, “Laser-Assisted Machining of Inconel 718 with an Economic Analysis,” International Journal of Machine Tools and Manufacture, Vol. 46, No. 14, 2006, pp. 1879-1891.
http://dx.doi.org/10.1016/j.ijmachtools.2005.11.005
|
[10]
|
S. Rajagopal, “Machining Aerospace Alloys with the Aid of a 15kW Laser,” Journal of Applied Metal Work, Vol. 2, No. 3, 1982, pp. 170-184.
http://dx.doi.org/10.1007/BF02834035
|
[11]
|
S. Sun, “Parametric Investigation of Laser-Assisted Ma chining of Commercially Pure Titanium,” Advanced En gineering Materials, Vol. 10, No. 6, 2008, pp. 565-572.
http://dx.doi.org/10.1002/adem.200700349
|
[12]
|
B. Yang, “Laser-Assisted Milling of Silicon Nitride Ce ramic :A Machinability Study,” International Journal of Mechatronics and Manufacturing Systems, Vol. 1, No. 1, 2008, pp. 116-130.
http://dx.doi.org/10.1504/IJMMS.2008.018282
|
[13]
|
F. E. Pfefferkorn, et al., “Laser Assisted Machining of Magnesia-Partially Stabilized Zirconia,” Journal of Man ufacturing Science and Engineering, Vol. 126, No. 1, 2005, pp. 346-357.
|
[14]
|
P. Dumitrescu, et al., “High-Power Diode Laser Assisted Hard Turning of AISI D2 Tool Steel,” International Journal of Machine Tools and Manufacture, Vol. 46, 2006, pp. 2009-2016. http://dx.doi.org/10.1016/j.ijmachtools.2006.01.005
|
[15]
|
A. N. Samant and N. B. Dahotre, “Laser Machining of Structural Ceramics—A Review,” Journal of European Ceramic Society, Vol. 29, No. 6, 2009, pp. 969-993.
http://dx.doi.org/10.1016/j.jeurceramsoc.2008.11.010
|
[16]
|
J. Mazumder and W. M. Steen, “Heat Transfer Model for CW Laser Materials Processing,” Journal of Applied Phy sics, Vol. 51, No. 2, 1980, pp. 941-947.
http://dx.doi.org/10.1063/1.327672
|
[17]
|
K. S. Yeung and P. H. Thornton, “Transient Thermal Ana lysis of Spot Welding Electrodes,” Welding Journal, Vol. 78, No. 1, 1999, pp. 1S-8S.
|
[18]
|
D. Mandelprot, “Modeling the Fluid-Flow in Laser-Beam,” Welding Journal, Vol. 65, No. 3, 1986, pp. 167S-174S.
|
[19]
|
X. W. Shen and L. Shuting, “Thermal Modeling and Ex perimental Investigation for Laser Assisted Milling of Silicon Nitride Ceramics,” Journal of Manufacturing Sci ence and Engineering, Vol. 131, No. 5, 2009, pp. 1254- 1274.
|
[20]
|
R. Patwa and Y. C. Shin, “Predictive Modeling of Laser Hardening of AISI51 50H Steels,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 2, 2007, pp. 307-320.
http://dx.doi.org/10.1016/j.ijmachtools.2006.03.016
|
[21]
|
J. C. Rozzi, et al., “Transient, Three-Dimensional Heat Transfer Model for Laser Assisted Machining of Silicon Nitride: I. Comparison of Predictions with Measured Surface Temperature Histories,” International Journal of Heat and Mass Transfer, Vol. 43, No. 8, 2000, pp. 1409- 1424. http://dx.doi.org/10.1016/S0017-9310(99)00217-3
|
[22]
|
J. C. Rozzi, F. P. Incropera and Y. C. Shina, “Transient, Three-Dimensional Heat Transfer Model for the Laser Assisted Machining of Silicon Nitride: II. Assessment of Parametric Effects,” International Journal of Heat and Mass Transfer, Vol. 43, No. 8, 2000, pp. 1425-1437.
http://dx.doi.org/10.1016/S0017-9310(99)00219-7
|
[23]
|
P. A. Rebro, Y. C. Shin and F. P. Incropera, “Design of Operating Conditions for Crack Free Laser-Assisted Ma chining of Mullite,” International Journal of Machine Tools and Manufacture, Vol. 44, No. 7-8, 2004, pp. 677- 694. http://dx.doi.org/10.1016/j.ijmachtools.2004.02.011
|
[24]
|
W. A. Chang, “A Study on Heat Source Equations for the Prediction of Weld Shape and Thermal Deformation in Laser Micro Welding,” Metallurgical and Materials Trans actions B-Process Metallurgy and Materials Processing Science, Vol. 33, No. 5, 1991, pp. 757-764.
|
[25]
|
M. H. Mohamed, “Laser Assisted Machining of Tool Steel,” M.Sc. Thesis, Military Technical College, Cairo, 2007.
|