Plasma Internal Energy for Toroidal Elliptic Plasmas with Triangularity
Muhammad Asif
DOI: 10.4236/jmp.2011.21002   PDF   HTML   XML   6,680 Downloads   10,750 Views  


The Plasma internal energy is not conserved on a magnetic surface if nonlinear flows are considered. The analysis here presented leads to a complicated equation for the plasma internal energy considering nonlinear flows in the collisional regime, including viscosity and in the low-vorticity approximation. Tokamak equilibrium has been analyzed with the magnetohydrodynamics nonlinear momentum equation in the low vorticity case. A generalized Grad–Shafranov-type equation has been also derived for this case.

Share and Cite:

M. Asif, "Plasma Internal Energy for Toroidal Elliptic Plasmas with Triangularity," Journal of Modern Physics, Vol. 2 No. 1, 2011, pp. 5-7. doi: 10.4236/jmp.2011.21002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Grad and H. Rubin, “Hydromagnetic Equilibria and Force-Free Fields,” Proceedings of the 2nd UN Conference on the Peaceful Uses of Atomic Energy, Geneva, Vol. 31, 1958, p. 190.
[2] V. D. Shafranov, “Plasma Equilibrium in a Magnetic Field,” Reviews of Plasma Physics, Vol. 2, 1966, p. 103.
[3] J. W. Bates and D. C. Montgomery, “Toroidal Visco-Resistive Magnetohydrodynamic Steady States Contain Vortices,” Physics of Plasmas, Vol. 5, 1998, 2649-2653. doi:10.1063/1.872952
[4] D. C. Montgomery, Abstracts and Proceedings Current Trends in International Fusion Research: A Review, Washington D. C., March 2001, p. 67.
[5] R. Iacono, A. Bondeson, F. Troyon and R. Gruber, “Axisymmetric Toroidal Equilibrium with Flow and Anisotropic Pressure,” Physics of Fluids B, Vol. 2, 1990, 1794-1803. doi:10.1063/1.859451
[6] P. Martin et al., “Conserved functions and extended Grad-Shafranov equation for low vorticity viscous plasmas with nonlinear flows,” Physics of Plasmas, vol. 12, 2005, p. 102505. doi:10.1063/1.2080587
[7] L. Guazzotto, R. Betti, J. Manickam and S. Kaye, “Numerical study of tokamak equilibria with arbitrary flow,” Physics of Plasmas, Vol. 11, 2004, 604-614. doi:10.1063/1.1637918
[8] P. Mart?n, “Magnetohydrodynamic treatment of collisional transport in toroidal configurations: Application to elliptic cross sections,” Physics of Plasmas, Vol. 7, 2000, 2915-2922. doi:10.1063/1.874142
[9] P. Mart?n and M. G. Haines, “Poloidal magnetic field around a tokamak magnetic surface,” Physics of Plasmas, Vol. 5, 1998, 410-416. doi:10.1063/1.872740
[10] E. K. Maschke and H. Perrin, “Exact solutions of the stationary MHD equations for a rotating toroidal plasma,” Plasma Physics, Vol. 22, 1980, 579-594. doi:10.1088/0032-1028/22/6/007
[11] E. Hameiri, “The equilibrium and stability of rotating plasmas,” Physics of Fluids, Vol. 26, 1982, 230-237. doi:10.1063/1.864012
[12] M. Tendler, “Important Issues of Physics of Improved Confinement in Tokamaks,” Astrophysics and Space Science, Vol. 256, 1998, 205-218. doi:10.1023/A:1001183424542
[13] F. L. Hinton and G. M. Staebler, “Particle and energy confinement bifurcation in tokamaks,” Physics of Fluids B, Vol. 5, 1993, 1281-1288. doi:10.1063/1.860919
[14] M. Tendler, “Different Scenarios of Transition into Regimes with Improved Confinement,” Plasma Physics and Controlled Fusion, Vol. 39, 1997, B371-382. doi:10.1088/0741-3335/39/12B/028

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.