Possible Trajectories of Agricultural Cropping Systems in China from 2011 to 2050


Predicting the possible impacts of future climate change on cropping systems can provide important theoretical support for reforming cropping system and adjusting the distribution of agricultural production in the future. The study was based on the daily data of future B2 climate scenario (2011-2050) and baseline climate condition (1961-1990) from high resolution regional climate model PRECIS (~50 km grid interval). According to climatic divisions of cropping systems in China, the active accumulated temperature stably passing the daily average temperature of 0°C, the extreme minimum temperature and the termination date passing the daily average temperature of 20°C which were justified by dominance as a limitation of different cropping systems in zero-grade zone were investigated. In addition, the possible trajectories of different cropping systems in China from 2011 to 2050 were also analyzed and assessed. Under the projected future B2 climate scenario, from 2011 to 2050, the northern boundaries of double cropping area and triple cropping area would move northward markedly. The most of the present double cropping area would be replaced by the different triple cropping patterns, while current double cropping area would shift towards areas presently dominated by single cropping systems. Thus the shift of multiple cropping areas would lead to a significant decrease of single cropping area. Compared with China’s land area, the percentage cover of single cropping area and double cropping area would decrease slowly, while percentage cover of triple cropping area would gradually increase.

Share and Cite:

J. Zhao and J. Guo, "Possible Trajectories of Agricultural Cropping Systems in China from 2011 to 2050," American Journal of Climate Change, Vol. 2 No. 3, 2013, pp. 191-197. doi: 10.4236/ajcc.2013.23019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] IPCC, “Climate Change 2007: The Physical Science Basis, Summary for Policy Makers,” IPCC WGI 4th Assessment Report, Paris, 2007.
[2] M. Cao, S. Ma and C. Han, “Potential Productivity and Human Carrying Capacity of an Agro-Ecosystem: An Analysis of Food Production Potential of China,” Agricultural Systems, Vol. 47, No. 4, 1995, pp. 387-414. doi:10.1016/0308-521X(95)92106-G
[3] F. L. Tao, M. Yokozawa, Y. Hayashi and E. D. Lin, “Changes in Agricultural Water Demands and Soil Moisture in China over the Last Half-Century and Their Effects on Agricultural Production,” Agricultural and Forest Meteorology, Vol. 118, No. 3-4, 2003, pp. 251-261. doi:10.1016/S0168-1923(03)00107-2
[4] J. K. Zhang, F. R. Zhang, D. Zhang, D. X. He, L. Zhang, C. G. Wu and X. B. Kong, “The Grain Potential of Cultivated Lands in Mainland China in 2004,” Land Use Policy, Vol. 26, No. 1, 2008, pp. 68-76. doi:10.1016/j.landusepol.2008.01.002
[5] W. Xiong, D. Conway, E. D. Lin, Y. L. Xu, H. Ju, J. H. Jiang, I. Holman and Y. Li, “Future Cereal Production in China: The Interaction of Climate Change, Water Availability and Socio-Economic Scenarios,” IOP Conference Series: Earth and Environmental Science, Vol. 6, 2009, pp. 34-44. doi:10.1088/1755-1307/6/7/372004
[6] X. G Yang, Z. J. Liu and F. Chen, “The Possible Effects of Global Warming on Cropping Systems in China I. The Possible Effects of Climate Warming on Northern Limits of Cropping Systems and Crop Yields in China,” Scientia Agricultura Sinica, Vol. 43, No. 2, 2010, pp. 329-336. doi:10.1016/S1671-2927(11)60040-0
[7] C. Rosenzweig and D. Hillel, “Climate Change and the Global Harvest,” Oxford University Press, Oxford, 1998.
[8] N. T. Francesco, D. Marcello, C. Rosenzweig and O. S. Claudio, “Effects of Climate Change and Elevated CO2 on Cropping Systems: Model Predictions at Two Italian Locations,” European Journal of Agronomy, Vol. 13, No. 2-3, 2000, pp. 179-189.
[9] S. D. Gryze, A. Wolf, S. R. Kaffka, J. Mitchell, D. E. Rolston, S. R. Temple, J. Lee and J. Six, “Simulating Greenhouse Gas Budgets of four California Cropping Systems under Conventional and Alternative Management,” Ecological Applications, Vol. 20, No. 7, 2010, pp. 1805-1819. doi:10.1890/09-0772.1
[10] F. Ewert, D. Rodriguez, P. Jamieson, M. A. Semenov, R. A. C. Mitchell, J. Goudriaan, J. R. Porter, B. A. Kimball, P. J. Pinter, R. Manderscheid, H. J. Weigel, A. Fangmeie, E. Fereres and F. Villalobos, “Effects of Elevated CO2 and Drought on Wheat: Testing Crop Simulation Models for Different Experimental and Climatic Conditions,” Agriculture, Ecosystems & Environment, Vol. 93, No. 1-3, 2002, pp. 249-266. doi:10.1016/S0167-8809(01)00352-8
[11] P. J. Gregory, S. N. Johnson, A. C. Newton and J. S. I. Ingram, “Integrating Pests and Pathogens into the Climate Change/Food Security Debate,” Journal of Experimental Botany, Vol. 60, No. 10, 2009, pp. 2827-2838. doi:10.1093/jxb/erp080
[12] D. W. Lawlor and R. A. C. Mitchell, “Crop Ecosystem Responses to Climatic Change: Wheat. Climate Change and Global Crop Productivity,” CAB International, Cambridge, 2000, pp. 57-80. doi:10.1079/9780851994390.0057
[13] F. N. Tubiello, M. Donatelli, C. Rosenzweig and C. O. Stockle, “Effects of Climate Change and Elevated CO2 on Cropping Systems: Model Predictions at Two Italian Locations,” European Journal of Agronomy, Vol. 13, No. 2-3, 2000, pp. 179-189. doi:10.1016/S1161-0301(00)00073-3
[14] U. N. Chaudhuri, M. B. Kirkam and E. T. Kanemasu, “Root Growth of Winter Wheat under Elevated Carbon Dioxide and Drought,” Crop Science, Vol. 30, No. 4, 1990, pp. 853-857. doi:10.2135/cropsci1990.0011183X003000040017x
[15] B. A. Kimball, P. J. J. Pinter, R. L. Garcia, R. L. LaMorte, G. W. Wall, D. J. Hunsaker, G. Wechsung, F. Wechsung and T. Kartschall, “Productivity and Water Use of Wheat under Free-Air CO2 Enrichment,” Global Change Biology, Vol. 1, No. 6, 1995, pp. 429-442. doi:10.1111/j.1365-2486.1995.tb00041.x
[16] N. Sionit, D. A. Mortensen, B. R. Strain and H. Hellmers, “Growth Response of Wheat to CO2 Enrichment and Different Levels of Mineral Nutrition,” Agronomy Journal, Vol. 73, No. 6, 1981, pp. 1023-1027.
[17] R. A. C. Mitchell, V. J. Mitchell, S. P. Driscoll, J. Franklin and D. W. Lawlor, “Effects of Increased CO2 Concentration and Temperature on Growth and Yield of Winter Wheat at Two Levels of Nitrogen Application,” Plant, Cell & Environment, Vol. 16, No. 5, 1993, pp. 521-529.
[18] F. T, Wang, “Impact of Climate Change on Cropping System and Its Implication for Agriculture in China,” Acta Meteorological Sinica, Vol. 11, No. 4, 1997, pp. 407-415.
[19] H. X. Zhang, “The Response of China’s Cropping Systems to Global Climatic Changes I. The Effect of Climatic Changes on Cropping Systems in China,” Chinese Journal of Agrometeorology, Vol. 21, No. 1, 2000, pp. 9-13.
[20] T. Axel, “Agricultural Irrigation Demand under Present and Future Climate Scenarios in China,” Global and Planetary Change, Vol. 60, No. 3-4, 2008, pp. 306-326.
[21] J. Gupta, X. Olsthoorn and E. Rotenberg, “The Role of Scientific Uncertainty in Compliance with the Kyoto Protocol to the Climate Change Convention,” Environmental Science & Policy, Vol. 6, No. 6, 2003, pp. 475-486. doi:10.1016/j.envsci.2003.09.001
[22] W. E. Easterling, L. O. Mearns, C. J. Hays and D. Marx, “Comparison of Agricultural Impacts of Climate Change Calculated from High and Low Resolution Climate Change Scenarios: Part II. Accounting from Adaptation and CO2 Direct Effects,” Climate Change, Vol. 51, No. 2, 2001, pp. 173-197.
[23] F. N. Tubiello, C. Rosenzweig, R. A. Goldberg, S. Jagtap and J. W. Jones, “Effects of Climate Change on US Crop Production: Simulation Results Using Two Different GCM Scenarios. Part I: Wheat, Potato, Maize and Citrus,” Climate Research, Vol. 20, No. 3, 2002, pp. 259-270. doi:10.3354/cr020259
[24] E. A. Tsvetsinskaya, L. O. Mearns, T. Mavromatis, W. Gao, L. McDaniel and M. W. Downton, “The Effect of Spatial Scale of Climatic Change Scenarios on Simulated Maize, Winter Wheat and Rice Production in the Southern United States,” Climate Change, Vol. 60, No. 1-2, 2003, pp. 37-72.
[25] N. Nakicenovic, J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grubler, T. Y. Jung, T. Kram, E. Emilio la Rovere, L. Michaelis, S. Mori, T. Morita, W. Pepper, H. Pitcher, L. Price, K. Riahi, A. Roehrl, H.-H. Rogner, A. Sankovski, M. E. Schlesinger, P. R. Shukla, S. Smith, R. J. Swart, S. van Rooyen, N. Victor and Z. Dadi, “Special Report on Emissions Scenarios,” Cambridge University Press, Cambridge, 2000.
[26] R. G. Jones, M. Noguer, D. C. Hassell, D. Hudson, S. S. Wilson, G. J. Jenkins and J. F. B. Mitchell, “Generating High Resolution Climate Change Scenarios using PRECIS,” Met Office Hadley Centre, Exeter, 2004, p. 35.
[27] Y. L. Xu, “Setting up PRECIS over China to Develop Regional SRES Climate Change Scenarios,” Proceedings of the International Workshop: Prediction of Food Production Variation in East Asia under Global Warming, Tsukuba, 2004, pp. 17-21.
[28] Y. L. Xu, X. Y. Huang, Y. Zhang, Z. P. Wen and W. B. Li, “Validating PRECIS’ Capacity of Simulating Present Climate over South China,” Acta Scientiarum Naturalium Unversitatis Sunyatseni, Vol. 46, No. 5, 2007, pp. 93-97.
[29] J. F. Zhao, J. P. Guo, Y. P. Ma, Y. H. E, P. J. Wang and D. R. Wu, “Change Trends of China Agricultural Thermal Resources under Climate Change and Related Adaptation Countermeasures,” Chinese Journal of Applied Ecology, Vol. 21, No. 11, 2010, pp. 2922-2930.
[30] J. A. Dracup, K. S. Lee and E. G. Paulson, “On the Definition of Droughts,” Water Resources Research, Vol. 16, No. 2, 1980, pp. 297-302. doi:10.1029/WR016i002p00297
[31] M. Lal, K. K. Singh, L. S. Rathore, G. Srinivasan and S. A. Saseendran, “Vulnerability of Rice and Wheat Yields in NW India to Future Change in Climate,” Agriculture, Ecosystems and Environment, Vol. 89, No. 2, 1998, pp. 101-114. doi:10.1016/S0168-1923(97)00064-6
[32] J. Q. Zhang, “Risk Assessment of Drought Disaster in the Maize-Growing Region of Songliao Plain, China,” Agriculture, Ecosystems and Environment, Vol. 102, No. 2, 2004, pp. 133-153. doi:10.1016/j.agee.2003.08.003
[33] L. Y. Zhong, L. M. Liu and Y. B. Liu, “Natural Disaster Risk Assessment of Grain Production in Dongting Lake Area, China,” Agriculture and Agricultural Science Procedia, Vol. 1, 2010, pp. 24-32. doi:10.1016/j.aaspro.2010.09.004

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.