Adsorption of Zinc from Aqueous Solutions Using Modified Brazilian Gray Clay

Abstract

In this study, the removal of zinc (Zn2+) from aqueous solutions was investigated using a Na-enriched Brazilian gray clay. The mineral clays were characterized through EDX, XRD analysis and CEC. A finite bath system was used to evaluate the main effects of mechanical agitation (from 100 to 200 rpm), pH values in the range from 6.0 to 8.0 and Zn2+ initial concentrations (from 10 to 50 mg/L) on the removal process capacity. Langmuir and Freundlich isotherm models were applied in order to determine the efficiency of clay used as an adsorbent. According to the obtained results, Langmuir model adjusts very well to the experimental data. Based on the kinetic studies for the Na-enriched gray clay, it was verified that the mechanism corresponds to a predominant pseudo-second order adsorption, presenting a kinetic constant value equal to k = 1.13 (g.min/mg).

Share and Cite:

P. Vasconcelos, W. Lima, M. Silva, A. Brito, H. Laborde and M. Rodrigues, "Adsorption of Zinc from Aqueous Solutions Using Modified Brazilian Gray Clay," American Journal of Analytical Chemistry, Vol. 4 No. 9, 2013, pp. 510-519. doi: 10.4236/ajac.2013.49065.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Mellah and S. Chegrouche, “The Removal of Zinc from Aqueous Solutions by Natural Bentonite,” Water Research, Vol. 31, No. 3, 1997, pp. 621-629. doi:10.1016/S0043-1354(96)00294-1
[2] F. Fu and Q. Wang, “Removal of Heavy Metal Ions from Wastewaters: A Review,” Journal of Environmental Management, Vol. 92, No. 3, 2011, pp. 407-418. doi:10.1016/j.jenvman.2010.11.011
[3] P. N. Cheremisinoff, “Handbook of Water and Wastewater Treatment Technology,” Marcel Dekker Inc., New York, 1995.
[4] S. Veli and T. Oztürk, “Kinetic Modeling of Adsorption of Reactive Azo Dye on Powdered Activated Carbon and Pumice,” Fresenius Environmental Bulletin, Vol. 14, No. 3, 2005, pp. 212-218.
[5] S. Babel and T. A. Kurniawan, “Low-Cost Adsorbents for Heavy Metal Uptake from Contaminated Water,” Journal of Hazardous Materials, Vol. 97, No. 1-3, 2003, pp. 219-243.
[6] G. McKay, H. S. Blair and A. Findon, “Equilibrium Studies for the Sorption of Metal-Ions onto Chitosan,” Indian Journal of Chemistry A, Vol. 28, No. 5, 1989, pp. 356-360.
[7] A. Saeed, M. Iqbal and W. Akhtar, “Removal and Recovery of Lead(II) from Single and Multimetal (Cd, Cu, Ni, Zn) Solutions by Crop Milling Waste (black gram husk),” Journal of Hazardous Materials, Vol. 117, No. 1, 2005, pp. 65-73.
[8] N. Meunier, J. Laroulandie, J. F. Blais and R. D. Tyagi, “Cacao Shells for Heavy Metal Removal from Acidic Solutions,” Bioresource Technology, Vol. 90, No. 3, 2003, pp. 255-263. doi:10.1016/S0960-8524(03)00129-9
[9] K. A. Tanabe, Jr. and M. Boudart, “Catalysis—Science and Technology. Solid Acid and Base Catalysis,” Springer-Verlag, New York, 1981, p. 231.
[10] Van Olphen, H., “An Introduction to Clay Colloid cHemistry,” Wiley Intersciene, 1977, p. 187.
[11] T. A. Kurniavan, G. Y. S. Chan, W. H. Lo and S. Babel, “Comparisons of Low-Cost Adsorbents for Treating Wastewaters Laden with Heavy Metals,” Science of the Total Environment, Vol. 366, No. 2-3, 2006, pp. 409-426. doi:10.1016/j.scitotenv.2005.10.001
[12] R. Naseem and S. S. Tahir, “Removal of Pb (II) from Aqueous/Acidic Solutions by Using Bentonite as an Adsorbent,” Water Research, Vol. 35, No. 16, 2001, pp. 3982-3986. doi:10.1016/S0043-1354(01)00130-0
[13] E. Eren, “Removal of copper ions by modified Unye clay, Turkey,” Journal of Hazardous Materials, Vol. 159, No. 2-3, 2008, pp. 235-244. doi:10.1016/j.jhazmat.2008.02.035
[14] F. Barbier, G. Duc and M. Petit-Ramel, “Adsorption of Lead and Cadmium Ions from Aqueous Solution to the Montmorillonite: Water Interface,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 166, No. 1-3, 2000, pp. 153-159. doi:10.1016/S0927-7757(99)00501-4
[15] A. Kaya and A. H. Oren, “Adsorption of Zinc From Aqueous Solutions to Bentonite,” Journal of Hazardous Materials, Vol. 125, No. 1-3, 2005, pp. 183-189.
[16] K.G. Bhattacharyya and S. S. Gupta, “Adsorption of a Few Heavy Metals on Natural and Modified Kaolinite and Montmorillonite: A Review,” Advances in Colloid and Interface Science, Vol. 140, No. 2, 2008, pp. 114-131.
[17] K. G. Bhattacharyya and S. S. Gupta, “Adsorptive Accumulation of Cd (II), Co (II), Cu (II), Pb (II), and Ni (II) from Water on Montmorillonite: Influence of Acid Activation,” Journal of Colloid and Interface Science, Vol. 310, No. 2, 2007, pp. 411-424. doi:10.1016/j.jcis.2007.01.080
[18] P. A. O’Day, G. A. Parks and G. E. Brown Jr., “Molecular Structure and Binding Sites of Co (II) Surface Complexes on Kaolinite from X-ray Adsorption Spectroscopy,” Clays and Clay Minerals, Vol. 42, No. 3,1994, pp. 337-355. doi:10.1346/CCMN.1994.0420312
[19] M. B. McBride, “Copper (II) Interactions with Kaolinite: Factors Controlling Adsorption,” Clays and Clay Minerals, Vol. 26, No. 2, 1978, pp. 101-106. doi:10.1346/CCMN.1978.0260204
[20] V. Chantawong, N. W. Harvey and V. N. Bashkin, “Comparison of Heavy Metal Adsorptions by Thai Kaolin and Ballclay Water,” Air & Soil Pollution, Vol. 148, No. 1-4, 2003, pp. 111-125. doi:10.1023/A:1025401927023
[21] G. Suraj, C. S. P. Iyer and M. Lalithambika, “Adsorption of Cadmium and Copper by Modified Kaolinites,” Applied Clay Science, Vol. 13, No. 4, 1998, pp. 293-306. doi:10.1016/S0169-1317(98)00043-X
[22] S. M. Dal Bosco, R. S. Jimenez, C. Vignado, J. Fontana, B. Geraldo, F. C. A. Figueiredo, D. Mandelli and W.A. Carvalho, “Removal of Mn (II) and Cd (II) from Wastewater by Natural and Modified Clays,” Adsorption, Vol. 12, No. 2, 2006, pp. 133-146. doi:10.1007/s10450-006-0375-1
[23] U. M. Saha, K. Iwasaki and K. Sakurai, “Desorption Behavior of Cd, Zn and Pb Sorbed on Hydroxyaluminumand Hydroxyaluminosilicate-Montmorillonite Complexes,” Clays and Clay Minerals, Vol. 51, No. 5, 2003, pp. 481-492. doi:10.1346/CCMN.2003.0510502
[24] Z. E. Grim, “Clay Mineralogy,” 2nd Edition, McGramHill Book, New York, 1968.
[25] P. Souza Santos, “Ciência e Tecnologia das Argilas,” 2nd Edition, Vol. 1, Edgard Blücher Ltd., Sao Paulo, 1992.
[26] J. B. Dixon, “Roles of Clays in Soils,” Applied Clay Science, Vol. 5, No. 5-6, 1991, pp. 489-503. doi:10.1016/0169-1317(91)90019-6
[27] E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu and T. C. Chung, “Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties,” Chemical Materials, Vol. 13, No. 10, 2001, pp. 3516-3523. doi:10.1021/cm0110627
[28] I. J. Chin, T. Thurn-Albrecht, H. C. Kim, T. P. Russell and J. Wang, “On Exfoliation of Montmorillonite in Epoxy,” Polymer, Vol. 42, No. 13, 2001, pp. 5947-5952. doi:10.1016/S0032-3861(00)00898-3
[29] N. ünlü and M. Ersoz, “Adsorption Characteristics of Heavy Metal Ions onto a Low Cost Biopolymeric Sorbent from Aqueous Solutions,” Journal of Hazardous Materials, Vol. 136, No. 2, 2006, pp. 272-280.
[30] A. S. Sheta, A. M. Falatah, M. S. Al-Sewailem, E. M Khaled and A. S. H. Sallam “Sorption Characteristics of Zinc and Iron by Natural Zeolite and Bentonite,” Microporous and Mesoporous Materials, Vol. 61, No. 1-3, 2003, pp. 127-136. doi:10.1016/S1387-1811(03)00360-3
[31] A. Benhammoua, A. Yaacoubia, L. Niboub and B. Tanoutia, “Adsorption of Metal Ions onto Moroccan Stevensite: Kinetic and Isotherm Studies,” Journal of Colloid and Interface Science, Vol. 282, No. 2, 2005, pp. 320-326. doi:10.1016/j.jcis.2004.08.168
[32] N. Oztürk and D. Kavak, “Removal from Aqueous Solutions by Adsorption on Waste Sepiolite and Activated Waste Sepiolite Using Full Factorial Design,” Adsorption, Vol. 10, No. 3, 2004, pp. 245-257. doi:10.1023/B:ADSO.0000046361.62180.c6
[33] F. Bergaya, B. K. G. Theng and G. Lagaly, “Handbook of Clay Science,” Elsevier, Amsterdam, 2006.
[34] P. W. Schindler and W. Stumm, “Aquatic Surface Chemistry,” Wiley, New York, 1987.
[35] M. Stadler and P. W. Chindler, “The Effect OF Dissolved Ligands upon the Sorption of Cu(II) By Ca-Montmorillonite,” Clays and Clay Minerals, Vol. 41, No. 6, 1993, p. 680. doi:10.1346/CCMN.1993.0410606
[36] Y. S. Ho and G. Mckay, “Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood,” Protection, Vol. 76, No. 2, 1998, pp. 183-191.
[37] M. G. A. Vieiraa, A. F. Almeida Netoa, M. L. Gimenesb and M. G. C. Da Silva, “Removal of Nickel on Bofe Bentonite Calcined Clay in Porous Bed,” Journal of Hazardous Materials, Vol. 176, No. 1-3, 2010, pp. 109-118. doi:10.1016/j.jhazmat.2009.10.128

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.