Reduced Activation Energy of Iron and Copper Ion Doped Mullite which Can Be Used as a Substrate in Electronic Industry

Abstract

The crystallized mullite composite has been synthesized via sol-gel technique in the presence of transition metal ions such as iron and copper. The electrical resistivity and activation energy of the composites have been measured and their variation with concentration of the metal ion has been investigated. The resistivity of doped mullite decreases rapidly in the shorter temperature range and sharply in the higher temperature range. The decreasing resistivity is due to the 3d orbital electrons and the concentration of metal ions present. X-ray analysis confirms the presence of metal ions in mullite, which entered in the octahedral site. The Fe2+ and Cu2+ ions will substitute Al3+ ion in the octahedral site of mullite structure and most probably will be responsible for reducing the resistivity as well as the activation energy. Transition metal ion doped mullite-based ceramic can be considered as promising material as a substrate in the electronic industry, because of its reasonable atom density, its low activation characteristics, low thermal expansion coefficient and high mechanical strength. The present material we have developed has an activation energy of resistivity/band gap energy, Eg, 1.11 eV at 0.04 M concentration for Cu2+ ion.

Share and Cite:

Roy, D. , Haldar, K. , Paul, B. , Bhattacharya, A. , Das, S. and Nandy, P. (2013) Reduced Activation Energy of Iron and Copper Ion Doped Mullite which Can Be Used as a Substrate in Electronic Industry. Journal of Surface Engineered Materials and Advanced Technology, 3, 11-17. doi: 10.4236/jsemat.2013.33A003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] I. A. Aksay, D. M. Dabbs and M. Sarikaya, “Mullite for Structural, Electronic, and Optical Applications,” Journal of the American Ceramic Society, Vol. 74, No. 10, 1991, pp. 2343-2358. doi:10.1111/j.1151-2916.1991.tb06768.x
[2] H. Schneider, “Kinetics of Crack Tip Blunting of Glasses,” Journal of the American Ceramic Society, Vol. 70, No. 1, 1987, pp. 43-48. doi:10.1111/j.1151-2916.1987.tb04851.x
[3] J. Schreuer, B. Hildmann and H. Schneider, “Elastic Properties of Mullite Single Crystals up to 1400℃,” Journal of the American Ceramic Society, Vol. 89, No. 5, 2006, pp. 1624-1631. doi:10.1111/j.1551-2916.2006.00921.x
[4] H. Schneider, J. Schreuer and B. Hildmann, “Structure and Properties of Mullite—A Review,” Journal of the European Ceramic Society, Vol. 28, No. 2, 2008, pp. 329-344. doi:10.1016/j.jeurceramsoc.2007.03.017
[5] D. S. Perera and G. Allott, “Mullite Morphology in Fired Kaolinite/Halloysite Clays,” Journal of Materials Science Letters, Vol. 4, No. 10, 1985, pp. 1270-1372. doi:10.1007/BF00723478
[6] S. Rahman and S. Freimann, “The Real Structure of Mullite,” In: H. Schneider and S. Komarneni, Eds., Mullite, Wiley-VCH, Weinheim, 2005.
[7] M. Schmucker and H. Schneider, “Mullite-Type Gels and Glasses,” In: Schneider and S. Komarneni, Eds., Mullite, Wiley-VCH, Weinheim, 2005.
[8] V. V. Vol’khin, I. L. Kazakova, P. Pongratz and E. Halwax, “Mullite Formation from Highly Homogeneous Mixtures of Al2O3 and SiO2,” Inorganic Materials, Vol. 36, No. 4, 2000, pp. 375-379. doi:10.1007/BF02758084
[9] Y. F. Chen, M. C. Wang and M. H. Hon, “Phase Transformation and Growth of Mullite in Kaolin Ceramics,” Journal of the European Ceramic Society, Vol. 24, No. 8, 2004, pp. 2389-2397. doi:10.1016/S0955-2219(03)00631-9
[10] F. Sahnoune, M. Chegaar, N. Saheb, P. Goeuriot and F. Valdivieso, “Algerian Kaolinite Used for Mullite Formation,” Applied Clay Science, Vol. 38, No. 3-4, 2008, pp. 304-310. doi:10.1016/j.clay.2007.04.013
[11] J. Pascual and J. Zapatero, “Preparation of Mullite Ceramics from Coprecipitated Aluminum Hydroxide and Kaolinite Using Hexamethylenediamine,” Journal of the American Ceramic Society, Vol. 83, No. 11, 2000, pp. 2677-2680. doi:10.1111/j.1151-2916.2000.tb01614.x
[12] Y. F. Tang ,Z. D. Ling ,Y. N. Lu ,A. D. Li, H. Q. Ling ,Y. J. Wang and Y. Shao, “Study on the Densification of Composite Coating Particles of α-Al2O3-SiO2,” Materials Chemistry and Physics, Vol. 75, No. 1-3, 2002, pp. 265-269. doi:10.1016/S0254-0584(02)00074-3
[13] V. Viswabaskaran, F. D. Gnanama and M. Balasubramanian, “Mullitisation Behaviour of South Indian Clays,” Ceramics International, Vol. 28, No. 5, 2002, pp. 557-564. doi:10.1016/S0272-8842(02)00010-X
[14] V. Viswabaskaran, F. D. Gnanama and M. Balasubramanian, “Mullitisation Behaviour of Calcined Clay-Alumina Mixtures,” Ceramics International, Vol. 29, No. 5, 2003, pp. 561-571. doi:10.1016/S0272-8842(02)00203-1
[15] V. Viswabaskaran, F. D. Gnanama and M. Balasubramanian, “Mullite from Clay-Reactive Alumina for Insulating Substrate Application,” Applied Clay Science, Vol. 25, No. 1-2, 2004, pp. 29-35. doi:10.1016/j.clay.2003.08.001
[16] D. Roy, B. Bagchi, S. Das and P. Nandy, “Electrical and Dielectric Properties of Sol-Gel Derived Mullite Doped with Transition Metals,” Materials Chemistry and Physics, Vol. 138, No. 1, 2013, pp. 375-383. doi:10.1016/j.matchemphys.2012.11.070
[17] T. Martisius and R. Giraitis, “Influence of Copper Oxide on Mullite Formation from Kaolinite,” Journal of Materials Chemistry, Vol. 13, No. 1, 2002, pp. 121-124. doi:10.1039/b206711k
[18] R. S. Aza, S. J. Moya, T. Epicier and G. Fantozzi, “Improved High-Temperature Mechanical Properties of Zirconia-Doped Mullite,” Journal of Materials Science Letters , Vol. 9, No. 12, 1990, pp. 1400-1402. doi:10.1007/BF00721596
[19] R. Torecillas Imose, Y. Takano, M. Yoshinaka and K. O. Hirota Yamaguchi, “Novel Synthesis of Mullite Powder with High Surface Area,” Journal of the American Ceramic Society, Vol. 81, No. 6, 1998, pp. 1537-1540. doi:10.1111/j.1151-2916.1998.tb02513.x
[20] B. L. Kong, T. S. Zhang, J. Ma and F. Boey, “Some Main Group Oxides on Mullite Phase Formation and Microstructure Evolution,” Journal of Alloys and Compounds, Vol. 359, No. 1-2, 2003, pp. 292-299. doi:10.1016/S0925-8388(03)00193-2
[21] B. Bagchi, S. Das, A. Bhattacharya, R. Basu and P. Nandy, “Nanocrystalline Mullite Synthesis at a Low Temperature: Effect of Copper Ions,” Journal of the American Ceramic Society, Vol. 92, No. 3, 2009, pp. 748-751. doi:10.1111/j.1551-2916.2008.02910.x
[22] A. Esharghawi, C. Penot and F. Nardou, “Contribution to Porous Mullite Synthesis from Clays by Adding Al and Mg Powders,” Journal of the European Ceramic Society, Vol. 29, No. 1, 2009, pp. 31-38. doi:10.1016/j.jeurceramsoc.2008.05.036
[23] S. P. Chaudhuri, S. K. Patra and A. K. Chakraborty, “Electrical Resistivity of Transition Metal Ion Doped Mullite,” Journal of the European Ceramic Society, Vol. 19, No. 16, 1999, pp. 2941-2950. doi:10.1016/S0955-2219(99)00058-8
[24] D. Roy, B. Bagchi, S. Das and P. Nandy, “Electrical Resistivity and Activation Energy of Cobalt Acetate Tetrahydrate Doped Mullite,” Ceramic-Silikaty, Vol. 56, No. 3, 2012, pp. 222-228.
[25] D. Roy, B. Bagchi, S. Das and P. Nandy, “Dielectric and Magnetic Properties of Sol-Gel Derived Mullite-Iron Nanocomposite,” Journal of Electroceramics, Vol. 28, No. 4, 2012, pp. 261-267. doi:10.1007/s10832-012-9725-4
[26] B. L. Kong, T. S. Zhang, J. Ma and F. Boey, “Anisotropic Grain Growth of Mullite in High-Energy Ball Milled Powders Doped with Transition Metal Oxides,” Journal of the European Ceramic Society, Vol. 23, No. 13, 2003, pp. 2247-2256. doi:10.1016/S0955-2219(03)00048-7
[27] D. Roy, S. Das and P. Nandy, “Possibility of Decreasing the Activation Energy of Resistivity of Mullite by Doping with Nickel Ion,” Material Science-Poland, Vol. 30, No. 4, 2012, pp. 406-413. doi:10.2478/s13536-012-0049-5
[28] M. G. Ferreira da Silva “Role of MnO on the Mullitization Behavior of Al2O3-SiO2 Gels,” Journal of Sol-Gel Science and Technology, Vol. 13, No. 1-3, 1998, pp. 987-990. doi:10.1023/A:1008652129890
[29] E. Tkalcec, J. Kurajica and J. Schmauch, “Crystallization of Amorphous Al2O3-SiO2 Precursors Doped with Nickel,” Journal of Non-Crystalline Solids, Vol. 353, No. 30-31, 2007, pp. 2837-2844. doi:10.1016/j.jnoncrysol.2007.06.011
[30] W. Z. Lv, Q. Qi, F. Wang, S. H. Wei, B. Liu and Z. K. Luo, “Sonochemical Synthesis of Cobalt Aluminate Nanoparticles under Various Preparation Parameters,” Ultrasonics Sonochemistry, Vol. 17, No. 5, 2010, pp. 793-801. doi:10.1016/j.ultsonch.2010.01.018
[31] D. Roy, B. Bagchi, A. Bhattacharya, S. Das and P. Nandy, “The Influence of Cobalt Acetate on Sol-Gel Derived Mullite Densification Behaviour,” Journal of Wuhan University of Technology-Mater. Sci. Ed., Vol. 27, No. 5, 2012, pp. 836-840. doi:10.1007/s11595-012-0558-4

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.