Share This Article:

Trimetazidine and Cellular Response in Cardiopulmonary Bypass*

Abstract Full-Text HTML Download Download as PDF (Size:285KB) PP. 171-179
DOI: 10.4236/wjcs.2013.35035    3,583 Downloads   4,888 Views   Citations


Background: Organic cellular inflammatory response constitutes a pathophysiological mechanism present in all Coronary Artery Bypass Graftings (CABGs). In this aspect, the organism brings forth its defenses through answers that involve cellular components. Objectives: To evaluate, in a randomized double-blind prospective study, controlled with placebo, the effects of trimetazidine (Tmz) on cellular response, analyzed through the variation of leukocytes, neutrophils and monocytes. Patients and Method: 30 patients were randomly selected to be studied, with no more than a mild ventricular dysfunction, and divided into two groups (Tmz and placebo) stratified by echocardiography and receiving medication/placebo in a 60 mg/day dose. The samples of leukocytes, neutrophils and monocytes were obtained in the pre-operatory day without medication, at surgery day with 12 to 15 days of medication/placebo, with 5 minutes after the aortic declamping, and within 12, 24 and 48 hours after surgery. Results: The leukocytes and neutrophils levels have decreased significantly in the treated group when compared to the control group, in all analyzed moments (p = 0.012; p = 0.005). Conclusions and Clinical Implications: Trimetazidine has proved to reduce significantly the levels of total leukocytes and neutrophils in patients submitted to CABG.

Cite this paper

G. Martins, A. G. de Siqueira Filho, J. Bosco de F. Santos, C. Roberto Cavalcanti Assunção, A. Valência and G. Martins, "Trimetazidine and Cellular Response in Cardiopulmonary Bypass*," World Journal of Cardiovascular Surgery, Vol. 3 No. 5, 2013, pp. 171-179. doi: 10.4236/wjcs.2013.35035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Larmann and G. Theilmeier, “Inflammatory Response to Cardiac Surgery: Cardiopulmonary Bypass versus Non-Cardiopulmonary Bypass Surgery,” Best Practice & Research Clinical Anaesthesiology, Vol. 18, No. 3, 2004, pp. 425-438. doi:10.1016/j.bpa.2003.12.004
[2] S. Wan, J. L. LeClerc and J. L. Vincent, “Inflammatory Response to Cardiopulmonary Bypass Mechanisms Involved and Possible Therapeutic Strategies,” Chest, Vol. 112, No. 3, 1997, pp. 676-692. doi:10.1378/chest.112.3.676
[3] A. L. S. Brasileiro, “A injúria de Reperfusao Miocárdica,” A Revista da SOCERJ, Vol. 10, No. 2, 1997, pp. 79-88.
[4] L. H. Edmunds, “Inflammatory Response to Cardiopulmonary Bypass,” The Annals of Thoracic Surgery, Vol. 66, No. 5, 1998, pp. S12-S16. doi:10.1016/S0003-4975(98)00967-9
[5] J. R. S. Day and K. M. Taylor, “The Systemic Inflammatory Response Syndrome and Cardiopulmonary Bypass,” International Journal of Surgery, Vol. 3, No. 2, 2005, pp. 129-140. doi:10.1016/j.ijsu.2005.04.002
[6] P. E. Greilich, C. F. Brouse, H. M. Rinder, et al., “Monocyte Activation in On-Pump versus Off-Pump Coronary Artery Bypass Surgery,” Journal of Cardiothoracic and Vascular Anesthesia, Vol. 22, No. 3, 2008, pp. 361-368. doi:10.1053/j.jvca.2007.08.009
[7] M. Nijziel, R. V. Oerle, C. Van’tVeer, et al., “Tissue Factor Activity in Human Monocytes Is Regulated by Plasma: Implications for the High and Low Responder Phenomenon,” British Journal of Haematology, Vol. 112, No. 1, 2001, pp. 98-104. doi:10.1046/j.1365-2141.2001.02545.x
[8] N. Maugeri, M. Brambilla, M. Camera, et al., “Human Polymorphonuclear Leukocytes Produce and Express Functional Tissue Factor upon Stimulation,” Journal of Thrombosis and Haemostasis, Vol. 4, No. 6, 2006, pp. 1323-1330. doi:10.1111/j.1538-7836.2006.01968.x
[9] T. Pintar and C. D. Collard, “The Systemic Inflammatory Response to Cardiopulmonary Bypass,” Anesthesiology Clinics of North America, Vol. 21, No. 3, 2003, pp. 453-464. doi:10.1016/S0889-8537(03)00039-7
[10] T. Kawamura, R. Wakusawa, K. Okada, et al., “Elevation of Cytokines during Open Heart Surgery with Cardiopulmonary Bypass: Participation of Interleukin 8 and 6 in Reperfusion Injury,” Canadian Journal of Anesthesia, Vol. 40, No. 11, 1993, pp. 1016-1021. doi:10.1007/BF03009470
[11] G. F. Martins, A. G. Siqueira-Filho, J. B. F. Santos, et al., “Trimetazidina na Injuria de Isquemia e Reperfusao em Cirurgia de Revascularizacao do Miocárdio,” Arquivos Brasileiros de Cardiologia, Vol. 97, No. 3, 2011, pp. 209-216. doi:10.1590/S0066-782X2011005000079
[12] A. L. Moens, M. Claeys, J. Timmermans, et al., “Myocardial Ischemia/Reperfusion—Injury a Clinical View on a Complex Pathophysiological Process,” International Journal of Cardiology, Vol. 100, No. 2, 2004, pp. 179-190. doi:10.1016/j.ijcard.2004.04.013
[13] J. G. Laffey, J. F. Boylan and D. C. H. Cheng, “The Systemic Inflammatory Response to Cardiac Surgery,” Anesthesiology, Vol. 97, No. 1, 2002, pp. 215-252. doi:10.1097/00000542-200207000-00030
[14] G. L. J. Vermeiren, M. J. Claeys, D. V. Bockstaele, et al., “Reperfusion Injury after Focal Myocardial Ischemia: Polymorphonuclear Leukocyte Activation and Its Clinical Implications,” Ressuscitation, Vol. 45, No. 1, 2000, pp. 35-61. doi:10.1016/S0300-9572(00)00168-4
[15] C. D. Collard and S. Gelman, “Pathophysiology, Clinical Manifestations, and Prevention of Ischemia-Reperfusion Injury,” Anesthesiology, Vol. 94, No. 6, 2001, pp. 1133-1138. doi:10.1097/00000542-200106000-00030
[16] H. Kin, Z. Q. Zhao, H. Y. Sun, et al., “Post Conditioning Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting Events in the Early Minutes of Reperfusion,” Cardiovascular Research, Vol. 62, No. 1, 2004, pp. 74-75. doi:10.1016/j.cardiores.2004.01.006
[17] O. J. Warren, A. J. Smith, C. Alexiou, et al., “The Inflammatory Response to Cardiopulmonary Bypass: Part 1—Mechanisms of Pathogenesis,” Journal of Cardiothoracic and Vascular Anesthesia, Vol. 23, No. 2, 2009, pp. 223-231. doi:10.1053/j.jvca.2008.08.007
[18] D. M. Cerqueira, J. N. Weissman and V. Dilsizian, “Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart,” Circulation, Vol. 105, No. 4, 2002, pp. 539-542. doi:10.1161/hc0402.102975
[19] A. Diegeler, N. Doll, T. Rauch, et al., “Humoral Immune Response during Coronary Artery Bypass Grafting,” Circulation, Vol. 102, No. 19, 2000, pp. III95-III100. doi:10.1161/01.CIR.102.suppl_3.III-95
[20] C. V. Serrano Jr., J. A. Souza, N. H. Lopes, et al., “Reduced Expression of Systemic Proinflammatory and Myocardial Biomarkers after Off-Pump versus On-Pump Coronary Artery Bypass Surgery: A Prospective Randomized Study,” Journal of Critical Care, Vol. 25, No. 2, 2010, pp. 305-312. doi:10.1016/j.jcrc.2009.06.009
[21] A. A. Albert, C. J. Beller, J. A. Walter, et al., “Preoperative High Leukocyte Count: A Novel Risk Factor for Stroke after Cardiac Surgery,” The Annals of Thoracic Surgery, Vol. 75, No. 5, 2003, pp. 1550-1557. doi:10.1016/S0003-4975(02)04376-X
[22] M. L. Fontes, D. Amar, A. Kulak, et al., “Increased Preoperative White Blood Cell Count Predicts Postoperative Atrial Fibrillation after Coronary Artery Bypass Surgery,” Journal of Cardiothoracic and Vascular Anesthesia, Vol. 23, No. 4, 2009, pp. 484-487. doi:10.1053/j.jvca.2009.01.030
[23] C. W. Whitten, G. E. Hill, R. Ivy, et al., “Does the Duration of Cardiopulmonary Bypass or Aortic Cross-Clamp, in the Absence of Blood and/or Blood Product Administration, Influence the IL-6 Response to Cardiac Surgery,” Anesthesia & Analgesia, Vol. 86, No. 1, 1998, pp. 28-33.
[24] J. McGuinness, D. Bouchier-Hayes and J. M. Redmond, “Understanding the Inflammatory Response to Cardiac Surgery,” Surgeon, Vol. 6, No. 3, 2008, pp. 162-171. doi:10.1016/S1479-666X(08)80113-8
[25] J. R. S. Day and K. M. Taylor, “The Systemic Inflammatory Response Syndrome and Cardiopulmonary Bypass,” International Journal of Surgery, Vol. 3, No. 2, 2005, pp. 129-140. doi:10.1016/j.ijsu.2005.04.002
[26] J. E. Jordan, Z. Q. Zhao and V. J. Johansen, “The Role of Neutrophils in Myocardial Ischemia-Reperfusion Injury,” Cardiovascular Ressearch, Vol. 43, No. 4, 1999, pp. 860-878. doi:10.1016/S0008-6363(99)00187-X
[27] J. Bucerius, J. F. Gummert, M. A. Borger, et al., “Stroke after Cardiac Surgery: A Risk Factor Analysis of 16,184 Consecutive Adult Patients,” The Annals of Thoracic Surgery, Vol. 75, No. 2, 2003, pp. 472-478. doi:10.1016/S0003-4975(02)04370-9
[28] J. Nissinen, F. Biancari, J. Wistbacka, et al., “Safe Time Limits of Aortic Cross-Clamping and Cardiopulmonary Bypass in Adult Cardiac Surgery,” Perfusion, Vol. 24, No. 5, 2009, pp. 297-305. doi:10.1177/0267659109354656
[29] J. Utoh, T. Yamamoto, T. Kambara, et al., “Complement Conversion and Leukocyte Kinetics in Open Heart Surgery,” The Japanese Journal of Surgery, Vol. 18, No. 3, 1988, pp. 259-267. doi:10.1007/BF02471442
[30] G. Lamm, J. Auer and J. Weber, “Postoperative White Blood Cell Count Predicts Atrial Fibrillation after Cardiac Surgery,” Journal of Cardiothoracic and Vascular Anesthesia, Vol. 20, No. 1, 2006, pp. 51-56. doi:10.1053/j.jvca.2005.03.026
[31] M. H. L. Souza and D. O. Elias, “Resposta Inflamatória Sistêmica à Circula??o Extracorpórea,” Anaesthesiology, 1999, Vol. 90, No. 1, pp. 72-80.
[32] J. F. M. Pruijt, P. Verzaal, R. Van Os, et al., “Neutrophils Are Indispensable for Hematopoietic Stem Cell Mobilization Induced by Interleukin-8 in Mice,” Proceedings of the National Academy of the Sciences of the United States of America, Vol. 99, No. 9, 2002, pp. 6228-6233. doi:10.1073/pnas.092112999
[33] I. U. Schraufstatter, R. G. DiScipio, M. Zhao, et al., “C3a and C5a Are Chemotactic Factors for Human Mesenchymal Stem Cells, Which Cause Prolonged ERK1/2 Phosphorylation,” The Journal of Immunology, Vol. 182, No. 6, 2009, pp. 3827-3836. doi:10.4049/jimmunol.0803055
[34] F. M. Williams, K. Tanda, M. Kus, et al., “Trimetazidine Inhibits Neutrophil Accumulation after Myocardial Ischemia and Reperfusion in Rabbits,” Journal of Cardiovascular Pharmacology, Vol. 22, No. 6, 1993, pp. 828-833. doi:10.1097/00005344-199312000-00008
[35] G. F. Martins, A. G. Siqueira-Filho, J. B. F. Santos, et al., “Trimetazidine and Inflammatory Response in Coronary Artery Bypass Grafting,” Arquivos Brasileiros de Cardiologia, Vol. 99, No. 2, 2012, pp. 688-696. doi:10.1590/S0066-782X2012005000066
[36] L. D. Monti, S. Allibardi, P. M. Piatti, et al., “Triglycerides Impair Postischemic Recovery in Isolated Hearts: Roles of Endothelin-1 and Trimetazidine,” The American Journal of Physiology—Heart and Circulatory Physiology, Vol. 281, No. 3, 2001, pp. H1122-H1130.
[37] I. Tritto, P. Wang, P. Kuppusamy, et al., “The Anti-Anginal Drug Trimetazidine Reduces Neutrophil-Mediated Cardiac Reperfusion Injury,” Journal of Cardiovascular Pharmacology, Vol. 46, No. 1, 2005, pp. 89-98. doi:10.1097/01.fjc.0000164091.81198.a3
[38] B. M. Matata, A. W. Sosnowski and M. Galinanes, “Off-Pump Bypass Graft Operation Significantly Reduces Oxidative Stress and Inflammation,” The Annals of Thoracic Surgery, Vol. 69, No. 3, 2000, pp. 785-791. doi:10.1016/S0003-4975(99)01420-4
[39] K. A. Kaminski, T. A. Bonda, J. Korecki, et al., “Oxidative Stress and Neutrophil Activation—The Two Keystones of Ischemia/Reperfusion Injury,” International Journal of Cardiology, Vol. 86, No. 1, 2002, pp. 41-59. doi:10.1016/S0167-5273(02)00189-4
[40] P. Di Napoli, P. Di Giovanni, M. A. Gaeta, et al., “Trimetazidine and Reduction in Mortality and Hospitalization in Patients with Ischemic Dilated Cardiomyopathy: A Post Hoc Analysis of the Villa Pini D’Abruzzo Trimetazidina Trial,” Journal of Cardiovascular Pharmacology, Vol. 50, No. 5, 2007, pp. 585-589. doi:10.1097/FJC.0b013e31814fa9cb

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.