Share This Article:

Optimal Convergence Analysis for Convection Dominated Diffusion Problems

Abstract Full-Text HTML Download Download as PDF (Size:88KB) PP. 16-20
DOI: 10.4236/jamp.2013.13004    3,707 Downloads   5,524 Views  

ABSTRACT

In classical mixed finite element method, the choice of the finite element approximating spaces is restricted by the imposition of the LBB consistency condition. The method of H1-Galerkin mixed finite element method avoids completely the imposition of such a condition on the approximating spaces. In this article, we discuss and analyze error estimates for Convection-dominated diffusion problems using H1-Galerkin mixed finite element method, along with the method of characteristics. Optimal order of convergence has been achieved for the error estimates of a two-step Euler backward difference scheme.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Ali, M. (2013) Optimal Convergence Analysis for Convection Dominated Diffusion Problems. Journal of Applied Mathematics and Physics, 1, 16-20. doi: 10.4236/jamp.2013.13004.

References

[1] A. C. Galeao, R. C. Almeida, S. M. C. Malta and A. F. D. Loula, “Finite Element Analysis of Convection-Dominated Reaction-Diffusion Problems,” Applied Numerical Mathematics, Vol. 48, No. 2, 2004, pp. 205-222. doi:10.1016/j.apnum.2003.10.002
[2] M. El-Amrani and M. Seaid, “A Finite Element Modified Method of Characteristics for Convection Heat Transport,” Numerical Methods for Partial Differential Equations, Vol. 24, No. 3, 2008, pp. 776-798. doi:10.1002/num.20288
[3] F. Freiberger, “Numerical Solution of Convection-Dominated Problems Using Isogeometric Analysis,” Institute fur Mathematik, TU Clausthal, Clausthal-Zellerfeld, 2010.
[4] J. Volker and N. Julia, “Error Analysis of the SUPG Finite Element Discretization of Evolutionary Convection-Diffusion-Reaction Equations,” SIAM Journal on Numerical Analysis, Vol. 49, No. 3, 2011, pp. 1149-1176.
[5] J. Douglas Jr., R. E. Ewing and M. F. Wheeler, “A Time-Discretization Procedure for a Mixed Finite Element Approximation of Miscible Displacement in Porous Media,” ESAIM: Mathematical Modelling and Numerical Analysis: Modélisation Mathématique et Analyse Numérique, Vol. 17, No. 3, 1983, pp. 249-265.
[6] I. Babuska, “The Finite Element Method with Lagrange Multipliers,” Numerische Mathematik, Vol. 20, No. 3, 1973, pp. 179-192. doi:10.1007/BF01436561
[7] F. Brezzi, “On the Existence, Uniqueness and Approximation of Saddle Point Problems Arising from Lagrange Multipliers”, ESAIM: Mathematical Modelling and Numerical Analysis: Modélisation Mathématique et Analyse Numérique, Vol. 8, No. 2, 1974, pp. 129-151.
[8] O. A. Ladyzhenskaya, “The Mathematical Theory of Viscous Incomplete Flows,” Gordon and Breach, London, 1969.
[9] T. Arbogast and M. F. Wheeler, “A Characteristics-Mixed Finite Element Method for Advection Dominated Transport Problems,” SIAM Journal on Numerical Analysis, Vol. 32, No. 2, 1995, pp. 404-424. doi:10.1137/0732017
[10] P. A. Raviart and J. M. Thomas, “A Mixed Finite Element Method for Second Order Elliptic Problems,” Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, Vol. 66, 1977, pp. 292-315. doi:10.1007/BFb0064470
[11] A. K. Pani, “H1-Galerkin Mixed Finite Element Method for Parabolic Equations,” SIAM Journal on Numerical Analysis, Vol. 35, No. 2, 1998, pp. 712-727. doi:10.1137/S0036142995280808
[12] Y. Liu, H. Li and J.-F. Wang, “Error Estimates of H1-Galerkin Mixed Finite Element Method for Schrodinger Equation,” Applied Mathematics—A Journal of Chinese Universities, Vol. 24, No. 1, 2009, pp. 83-89. doi:10.1007/s11766-009-1782-3
[13] J. Douglas Jr. and T. F. Russell, “Numerical Methods for Convection-Diffusion Problems Based on Combining the method of Characteristics with Finite Element or Finite Difference Procedures,” SIAM Journal on Numerical Analysis, Vol. 19, 1982, pp. 871-885. doi:10.1137/0719063
[14] Ewing, R. E. and T. F. Russell, “Multistep Galerkin Methods along Characteristics for Convection-Diffusion Problems,” In: R. Vichnevetsky and R. S. Stepkman, Eds., Advances in Computer Methods for Partial Differential Equations, IMACS, Rutgers University, New Brunswick, 1981, pp. 28-36.
[15] T. F. Russell, “Time-Stepping along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media,” SIAM Journal on Numerical Analysis, Vol. 22, No. 5, 1985, pp. 970-1013. doi:10.1137/0722059
[16] M. A. Mohamed Ali, “An Error Estimates for Convection Dominated Diffusion Problems,” Journal of Natural Sciences and Mathematics, Vol. 6, No. 1, 2013, pp. 41-53.
[17] M. F. Wheeler, “Apriori L2-Error Estimates for Galerkin Approximations to Parabolic Differential Equations,” SIAM Journal on Numerical Analysis, Vol. 10, No. 4, 1973, pp. 723-749. doi:10.1137/0710062
[18] A. K. Pani and R. S. Anderssen, “Finite Element Methods for Identification of Parameters in Parabolic Problems,” Proceedings of the Centre for Mathematics and Its Applications, Vol. 31, 1992, pp. 208-221.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.