Characterization of the Intracellular Distribution of Adenine Nucleotide Translocase (ANT) in Drosophila Indirect Flight Muscles


Background: The high power output necessary for insect flight has driven the evolution of muscles with large myofibrils (primary energy consumers) and abundant mitochondria (primary energy suppliers). The intricate functional interrelationship between these two organelles remains largely unknown despite its fundamental importance in understanding insect flight bioenergetics. Unlike vertebrate muscle that relies on a phosphagen (creatine phosphate/creatine kinase) system to regulate high energy phosphate flux, insect flight muscle has been reported to lack mitochondrial arginine kinase (analogous to creatine kinase), a key enzyme that enables intracellular energy transport. Creatine kinase is known to interact with mitochondrial adenine nucleotide translocase (ANT) in the transfer of ADP and ATP into and out of the mitochondria. Results: Here, we use quantitative immunogold transmission electron microscopy to show that in Drosophila melanogaster indirect flight muscles (IFM), ANT is present in the mitochondria as well as throughout the myofibril. To confirm this unexpected result, we created a transgenic line that expresses a chimeric GFP-ANT protein and used an anti-GFP antibody to determine the intracellular distribution of the fusion protein in the IFM. Similar to results obtained with anti-ANT, the fusion GFP-ANT protein is detected in myofibrils and mitochondria. We confirmed the absence of arginine kinase from IFM mitochondria and show that its sarcomeric (i.e., intramyofibrillar) distribution is similar to that of ANT. Conclusions: These results raise the possibility that direct channeling of nucleotides between mitochondria and myofibrils is assisted by an ANT protein thereby circumventing the need for a phosphagen shuttle in the IFM. The myofibrillar ANT may represent a unique adaptation in the muscles that require efficient exchange of nucleotides between mitochondria and myofibrils.

Share and Cite:

K. Vishnudas, V. , S. Guillemette, S. , Lekkas, P. , W. Maughan, D. and O. Vigoreaux, J. (2013) Characterization of the Intracellular Distribution of Adenine Nucleotide Translocase (ANT) in Drosophila Indirect Flight Muscles. CellBio, 2, 149-162. doi: 10.4236/cellbio.2013.23017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. F. Harrison and S P. Roberts, “Flight Respiration and Energetics,” Annual Review of Physiology, Vol. 62, 2000, pp. 179-205. doi:10.1146/annurev.physiol.62.1.179
[2] A. E. Kammer and B. Heinrich, “Insect Flight Metabo- lism,” In: J. E. Treherne, M. J. Berridge and V. B. Wigglesworth, Eds., Advances in Insect Physiology, Vol. 13, Academic Press, London, 1978, pp. 133-228.
[3] T. M. Casey, C. P. Ellington and J. M. Gabriel, “Allometric Scaling of Muscle Performance and Metabolism: Insects,” Advances in Bioscience and Biotechnology, Vol. 84, 1992, pp. 152-162.
[4] D. M. Swank, V. K. Vishnudas and D. W. Maughan, “An Exceptionally Fast Actomyosin Reaction Powers Insect Flight Muscle,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 46, 2006, pp. 17543-17547. doi:10.1073/pnas.0604972103
[5] R. K. Josephson, J. G. Malamud and D. R. Stokes, “Asynchronous Muscle: A Primer,” The Journal of Experimental Biology, Vol. 203, Pt. 18, 2000, pp. 2713- 2722.
[6] V. Vishnudas and J. O. Vigoreaux, “Sustained High Power Performance: Possible Strategies for Integrating Energy Supply and Demand in Flight Muscles,” In: J. O. Vigoreaux, Ed., Nature’s Versatile Engine: Insect Flight Muscle Inside and out, Springer/Landes Bioscience, New York, 2006, pp. 188-196. doi:10.1007/0-387-31213-7_15
[7] E. Pebay-Peyroula and G. Brandolin, “Nucleotide Exchange in Mitochondria: Insight at a Molecular Level,” Current Opinion in Structural Biology, Vol. 14, No. 4, 2004, pp. 420-425. doi:10.1016/
[8] A. Dorner and H. P. Schultheiss, “Adenine Nucleotide Translocase in the Focus of Cardiovascular Diseases,” Trends in Cardiovascular Medicine, Vol. 17, No. 8, 2007, pp. 284-290. doi:10.1016/j.tcm.2007.10.001
[9] J. D. Sharer, J. F. Shern, H. Van Valkenburgh and D. C. Wallace and R. A. Kahn, “ARL2 and BART Enter Mitochondria and Bind the Adenine Nucleotide Transporter,” Molecular Biology of the Cell, Vol. 13, No. 1, 2002, pp. 71-83. doi:10.1091/mbc.01-05-0245
[10] K. Guerrero, B. Wuyam, P. Mezin, I. Vivodtzev, M. Vendelin, J. C. Borel, R. Hacini, O. Chavanon, S. Imbeaud, V. Saks and C. Pison, “Functional Coupling of Adenine Nucleotide Translocase and Mitochondrial Creatine Kinase Is Enhanced after Exercise Training in Lung Transplant Skeletal Muscle,” American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, Vol. 289, No. 4, 2005, pp. R1144-R1154. doi:10.1152/ajpregu.00229.2005
[11] H. L. Sweeney, “The Importance of the Creatine Kinase Reaction: The Concept of Metabolic Capacitance,” Medicine & Science in Sports & Exercise, Vol. 26, No. 1, 1994, pp. 30-36. doi:10.1249/00005768-199401000-00007
[12] W. R. Ellington, “Evolution and Physiological Roles of Phosphagen Systems,” Annual Review of Physiology, Vol. 63, 2001, pp. 289-325.
[13] M. Wyss, D. M. Maughan and T. Wallimann, “Re-Evaluation of the Structure and Physiological Function of Guanidino Kinases in Fruitfly (Drosophila), Sea Urchin (Psammechinus miliaris) and Man,” Biochemical Journal, Vol. 309, Pt. 1, 1995, pp. 255-261. doi:10.1146/annurev.physiol.63.1.289
[14] Y. Q. Zhang, J. Roote, S. Brogna, A. W. Davis, D. A. Barbash, D. Nash and M. Ashburner, “Stress Sensitive B Encodes an Adenine Nucleotide Translocase in Drosophila melanogaster,” Genetics, Vol. 153, No. 2, 1999, pp. 891-903.
[15] M. D. Brand, J. L. Pakay, A. Ocloo, J. Kokoszka, D. C. Wallace, P. S. Brookes and E. J. Cornwall, “The Basal Proton Conductance of Mitochondria Depends on Ade- nine Nucleotide Translocase Content,” Biochemical Journal, Vol. 392, Pt. 2, 2005, pp. 353-362. doi:10.1042/BJ20050890
[16] R. Rikhy, M. Ramaswami and K. S. Krishnan, “A Temperature-Sensitive Allele of Drosophila sesB Reveals Acute Functions for the Mitochondrial Adenine Nucleotide Translocase in Synaptic Transmission and Dynamin Regulation,” Genetics, Vol. 165, No. 3, 2003, pp. 1243-1253.
[17] N. Trotta, C. K. Rodesch, T. Fergestad and K. Broadie, “Cellular Bases of Activity-Dependent Paralysis in Drosophila Stress-Sensitive Mutants,” Journal of Neurobiology, Vol. 60, No. 3, 2004, pp. 328-347. doi:10.1002/neu.20017
[18] Y. Q. Zhang, J. Roote, S. Brogna, A. W. Davis, D. A. Barbash, D. Nash and M. Ashburner, “Stress Sensitive B Encodes an Adenine Nucleotide Translocase in Drosophila melanogaster,” Genetics, Vol. 153, No. 2, 1999, pp. 891-903.
[19] A. Louvi and S. G. Tsitilou, “A cDNA Clone Encoding the ADP/ATP Translocase of Drosophila melanogaster Shows a High Degree of Similarity with the Mammalian ADP/ATP Translocases,” Journal of Molecular Evolution, Vol. 35, No. 1, 1992, pp. 44-50. doi:10.1007/BF00160259
[20] A. Grado, C. Manchado, R. Iglesias, M. Giralt, F. Villarroya, T. Mampel and O. Vinas, “Muscle/Heart Isoform of Mitochondrial Adenine Nucleotide Translocase (ANT1) Is Transiently Expressed during Perinatal Development in Rat Liver,” FEBS Letters, Vol. 421, No. 3, 1998, pp. 213-216. doi:10.1016/S0014-5793(97)01563-9
[21] P. Barthmaier and E. Fyrberg, “Monitoring Development and Pathology of Drosophila Indirect Flight Muscles Using Green Fluorescent Protein,” Developmental Biology, Vol. 169, No. 2, 1995, pp. 770-774. doi:10.1006/dbio.1995.1186
[22] M. Vendelin, M. Lemba and V. A. Saks, “Analysis of Functional Coupling: Mitochondrial Creatine Kinase and Adenine Nucleotide Translocase,” Biophysical Journal, Vol. 87, No. 1, 2004, pp. 696-713. doi:10.1529/biophysj.103.036210
[23] R. Ventura-Clapier, A. Kaasik and V. Veksler, “Structural and Functional Adaptations of Striated Muscles to CK Deficiency,” Molecular and Cellular Biochemistry, Vol. 256-257, No. 1-2, 2004, pp. 29-41. doi:10.1023/B:MCBI.0000009857.69730.97
[24] D. G. Brdiczka, D. B. Zorov and S. S. Sheu, “Mitochondrial Contact Sites: Their Role in Energy Metabolism and Apoptosis,” Biochimica et Biophysica Acta, Vol. 1762, No. 2, 2006, pp. 148-163.
[25] A. P. Halestrap and C. Brennerb, “The Adenine Nucleotide Translocase: A Central Component of the Mitochondrial Permeability Transition Pore and Key Player in Cell Death,” Current Medicinal Chemistry, Vol. 10, No. 16, 2003, pp. 1507-1525. doi:10.2174/0929867033457278
[26] S. M. Claypool, Y. Oktay, P. Boontheung, J. A. Loo and C. M. Koehler, “Cardiolipin Defines the Interactome of the Major ADP/ATP Carrier Protein of the Mitochondrial Inner Membrane,” The Journal of Cell Biology, Vol. 182, No. 5, 2008, pp. 937-950. doi:10.2174/0929867033457278
[27] R. Liu, A. L. Strom, J. Zhai, J. Gal, S. Bao, W. Gong and H. Zhu, “Enzymatically Inactive Adenylate Kinase 4 Interacts with Mitochondrial ADP/ATP Translocase,” The International Journal of Biochemistry & Cell Biology, Vol. 41, No. 6, 2009, pp. 1371-1380. doi:10.1016/j.biocel.2008.12.002
[28] F. Verrier, A. Deniaud, M. Lebras, D. Metivier, G. Kroemer, B. Mignotte, G. Jan and C. Brenner, “Dynamic Evolution of the Adenine Nucleotide Translocase Interactome during Chemotherapy-Induced Apoptosis,” Oncogene, Vol. 23, No. 49, 2004, 8049-8064. doi:10.1038/sj.onc.1208001
[29] G. Csordas, C. Renken, P. Varnai, L. Walter, D. Weaver, K. F. Buttle, T. Balla, C. A. Mannella and G. Hajnoczky, “Structural and Functional Features and Significance of the Physical Linkage between ER and Mitochondria,” The Journal of Cell Biology, Vol. 174, No. 7, 2006, pp. 915-921. doi:10.1083/jcb.200604016
[30] R. Rizzuto, P. Pinton, W. Carrington, F. S. Fay, K. E. Fogarty, L. M. Lifshitz, R. A. Tuft and T. Pozzan, “Close Contacts with the Endoplasmic Reticulum as Determinants of Mitochondrial Ca2+ Responses,” Science, Vol. 280, No. 5370, 1998, pp. 1763-1766. doi:10.1126/science.280.5370.1763
[31] J. Dai, K. H. Kuo, J. M. Leo, C. van Breemen and C. H. Lee, “Rearrangement of the Close Contact between the Mitochondria and the Sarcoplasmic Reticulum in Airway Smooth Muscle,” Cell Calcium, Vol. 37, No. 4, 2005, pp. 333-340. doi:10.1016/j.ceca.2004.12.002
[32] K. C. Rowland, N. K. Irby and G. A. Spirou, “Specialized Synapse-Associated Structures within the Calyx of Held,” The Journal of Neuroscience, Vol. 20, No. 24, 2000, pp. 9135-9144.
[33] X. Jiang and X. Wang, “Cytochrome C-Mediated Apoptosis,” Annual Review of Biochemistry, Vol. 73, 2004, pp. 87-106. doi:10.1146/annurev.biochem.73.011303.073706
[34] L. O. Martinez, S. Jacquet, J. P. Esteve, C. Rolland, E. Cabezon, E. Champagne, T. Pineau, V. Georgeaud, J. E. Walker, F. Terce, et al., “Ectopic Beta-Chain of ATP Synthase Is An Apolipoprotein A-I Receptor in Hepatic HDL Endocytosis,” Nature, Vol. 421, No. 6918, 2003, pp. 75-79. doi:10.1038/nature01250
[35] R. Buettner, G. Papoutsoglou, E. Scemes, D. C. Spray and R. Dermietzel, “Evidence for Secretory Pathway Localization of a Voltage-Dependent Anion Channel Isoform,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 7, 2000, pp. 3201-3206. doi:10.1073/pnas.97.7.3201
[36] J. Sylvestre, A. Margeot, C. Jacq, G. Dujardin and M. Corral-Debrinski, “The Role of the 3’ Untranslated Region in mRNA Sorting to the Vicinity of Mitochondria Is Conserved from Yeast to Human Cells,” Molecular Biology of the Cell, Vol. 14, No. 9, 2003, pp. 3848-3856. doi:10.1091/mbc.E03-02-0074
[37] R. Shalgi, M. Lapidot, R. Shamir and Y. Pilpel, “A Catalog of Stability-Associated Sequence Elements in 3’ UTRs of Yeast mRNAs,” Genome Biology, Vol. 6, 2005, p. R86. doi:10.1186/gb-2005-6-10-r86
[38] Y. Adereth, V. Dammai, N. Kose, R. Li and T. Hsu, “RNA-Dependent Integrin Alpha3 Protein Localization Regulated by the Muscleblind-Like Protein MLP1,” Nature Cell Biology, Vol. 7, No. 12, 2005, pp. 1240-1247.
[39] L. Machuca-Tzili, H. Thorpe, T. E. Robinson, C. Sewry and J. D. Brook, “Flies Deficient in Muscleblind Protein Model Features of Myotonic Dystrophy with Altered Splice Forms of Z-Band-Associated Transcripts,” Human Genetics, Vol. 120, No. 4, 2006, pp. 487-499. doi:10.1007/s00439-006-0228-8
[40] A. J. Pineda and W. R. Ellington, “Immunogold Transmission Electron Microscopic Localization of Arginine Kinase in Arthropod Mitochondria,” Journal of Experimental Zoology, Vol. 281, No. 2, 1998, pp. 73-79. doi:10.1002/(SICI)1097-010X(19980601)281:2<73::AID-JEZ1>3.0.CO;2-7
[41] T. Wallimann, M. Wyss, D. Brdiczka, K. Nicolay and H. M. Eppenberger, “Intracellular Compartmentation, Structure and Function of Creatine Kinase Isoenzymes in Tissues with High and Fluctuating Energy Demands: The ‘Phosphocreatine Circuit’ for Cellular Energy Homeostasis,” The Biochemical Journal, Vol. 281, Pt. 1, 1992, pp. 21-40.
[42] W. R. Ellington and A. C. Hines, “Mitochondrial Activities of Phosphagen Kinases Are Not widely Distributed in the Invertebrates,” Biological Bulletin, Vol. 180, No. 3, 1991, pp. 505-507. doi:10.2307/1542352
[43] L. R. Munneke and G. E. Collier, “Cytoplasmic and Mitochondrial Arginine Kinases in Drosophila: Evidence for a Single Gene,” Biochemical Genetics, Vol. 26, No. 1-2, 1988, pp. 131-141. doi:10.1007/BF00555494
[44] A. B. Lang, C. Wyss and H. M. Eppenberger, “Localization of Arginine Kinase in Muscles Fibres of Drosophila melanogaster,” Journal of Muscle Research & Cell Motility, Vol. 1, No. 2, 1980, pp. 147-161. doi:10.1007/BF00711796
[45] C. Ferguson, A. Lakey, A. Hutchings, G. W. Butcher, K. R. Leonard and B. Bullard, “Cytoskeletal Proteins of Insect Muscle: Location of Zeelins in Lethocerus Flight and Leg Muscle,” Journal of Cell Science, Vol. 107, Pt. 5, 1994, pp. 1115-1129.
[46] T. Hornemann, M. Stolz and T. Wallimann, “Isoenzyme-Specific Interaction of Muscle-Type Creatine Kinase with the Sarcomeric M-Line Is Mediated by Nh2-Terminal Lysine Charge-Clamps,” The Journal of Cell Biology, Vol. 149, 2000, pp. 1225-1234. doi:10.1083/jcb.149.6.1225
[47] T. Wallimann, M. Wyss, D. Brdiczka, K. Nicolay and H. M. Eppenberger, “Intracellular Compartmentation, Structure and Function of Creatine Kinase Isoenzymes in Tissues with High and Fluctuating Energy Demands: The ‘Phosphocreatine Circuit’ for Cellular Energy Homeostasis,” Biochemical Journal, Vol. 281, Pt. 1, 1992, pp. 21-40.
[48] P. W. Hochachka, “Muscles as Molecular and Metabolic Machines,” CRC Press, Boca Raton, 1994.
[49] B. Sacktor, “Utilization of Fuels by Muscle,” In: D. J. Candy and B. A. Kilby, Eds., Insect Biochemistry and Function, Chapman and Hall, London, 1975, pp. 1-81. doi:10.1007/978-94-009-5853-1_1
[50] B. Saktor, “Utilization of Fuels by Muscle,” Chapman and Hall, London, 1975.
[51] M. Novotova, M. Pavlovicova, V. I. Veksler, R. Ventura-Clapier and I. Zahradnik, “Ultrastructural Remodeling of Fast Skeletal Muscle Fibers Induced by Invalidation of Creatine Kinase,” American Journal of Physiology Cell Physiology, Vol. 291, No. 6, 2006, pp. C1279-C1285. doi:10.1152/ajpcell.00114.2006
[52] A. G. Jimenez, B. R. Locke and S. T. Kinsey, “The Influence of Oxygen and High-Energy Phosphate Diffusion on Metabolic Scaling in Three Species of Tail-Flipping Crustaceans,” The Journal of Experimental Biology, Vol. 211, 2008, pp. 3214-3225. doi:10.1242/jeb.020677
[53] K. Yoshizaki, H. Watari and G. K. Radda, “Role of Phosphocreatine in Energy Transport in Skeletal Muscle of Bullfrog Studied by 31P-NMR,” Biochimica et Biophysica Acta, Vol. 1051, No. 2, 1990, pp. 144-150. doi:10.1016/0167-4889(90)90186-H
[54] R. A. de Graaf, A. van Kranenburg and K. Nicolay, “In Vivo 31P-NMR Diffusion Spectroscopy of ATP and Phosphocreatine in Rat Skeletal Muscle,” Biophysical Journal, Vol. 78, No. 4, 2000, pp. 1657-1664. doi:10.1016/S0006-3495(00)76717-8
[55] A. Kaasik, V. Veksler, E. Boehm, M. Novotova, A. Minajeva and R. Ventura-Clapier, “Energetic Crosstalk between Organelles: Architectural Integration of Energy Production and Utilization,” Circulation Research, Vol. 89, 2001, pp. 153-159. doi:10.1161/hh1401.093440
[56] H. R. Ramay and M. Vendelin, “Diffusion Restrictions Surrounding Mitochondria: A Mathematical Model of Heart Muscle Fibers,” Biophysical Journal, Vol. 97, No. 2, 2009, pp. 443-452. doi:10.1016/j.bpj.2009.04.062
[57] V. Saks, A. Kuznetsov, T. Andrienko, Y. Usson, F. Appaix, K. Guerrero, T. Kaambre, P. Sikk, M. Lemba and M. Vendelin, “Heterogeneity of ADP Diffusion and Regulation of Respiration in Cardiac Cells,” Biophysical Journal, Vol. 84, No. 5, 2003, pp. 3436-3456. doi:10.1016/S0006-3495(03)70065-4
[58] K. Ashman, T. Houthaeve, J. Clayton, M. Wilm, A. Podtelejnikov, O. N. Jensen and M. Mann, “The Application of Robotics and Mass Spectrometry to the Characterisation of the Drosophila melanogaster Indirect Flight Muscle Proteome,” Letters in Peptide Science, Vol. 4, No. 2, 1997, pp. 57-65. doi:10.1007/BF02443516
[59] D. K. Nam, S. Lee, G. Zhou, X. Cao, C. Wang, T. Clark, J. Chen, J. D. Rowley and S. M. Wang, “Oligo (dT) Primer Generates a High Frequency of Truncated c DNAs through Internal Ploy(A) Priming during Reverse Transcription,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 9, 2002, pp. 6152-6156. doi:10.1073/pnas.092140899
[60] J. O. Vigoreaux, J. D Saide and M. L. Pardue, “Structurally Different Drosophila Striated Muscles Utilize Distinct Variants of Z-Band-Associated Proteins,” Journal of Muscle Research & Cell Motility, Vol. 12, No. 4, 1991, pp. 340-354. doi:10.1007/BF01738589
[61] U. K. Laemmli, “Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4,” Nature, Vol. 277, 1970, pp. 680-685. doi:10.1038/227680a0
[62] G. Ayer and J. O. Vigoreaux, “Flightin Is a Myosin Rod Binding Protein,” Cell Biochemistry and Biophysics, Vol. 38, No. 1, 2003, pp. 41-54. doi:10.1385/CBB:38:1:41

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.