Dark Energy as a Vacuum Component of the Universe

Abstract

The vacuum component of the Universe is investigated in both the quantum and the classical regimes of its evolution. The associated vacuum energy density was reduced by more than 78 orders of magnitude in 10-6 sec in the quantum regime and by nearly 45 orders of magnitude in 4 × 1017 sec in the classical regime. The vacuum energy was spent for the organization of new microstates during the expansion of the Universe. In the quantum regime, phase transitions were more effective in reducing the vacuum energy than in producing new microstates. Both of these phenomena have been recorded in the history of the Universe. Herein, the need for the evolution of the Universe’s vacuum component is discussed. Indeed, through this evolution, all 123 crisis orders of dark energy are reduced by conventional physical processes. A table of the vacuum energy’s evolution as the function of red shift and a short discussion about vacuum stability are presented.

Share and Cite:

V. Burdyuzha, "Dark Energy as a Vacuum Component of the Universe," Journal of Modern Physics, Vol. 4 No. 9, 2013, pp. 1185-1188. doi: 10.4236/jmp.2013.49160.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Hooft, “The Holographic Principle,” arXiv:hep-th/ 0003004
[2] E. Verlinde, Journal of High Energy Physics, Vol. 2011, p. 29. doi:10.1007/JHEP04(2011)029
[3] E. Komatsu, et al., The Astrophysical Journal Supplement Series, Vol. 192, 2011, p. 18. doi:10.1088/0067-0049/192/2/18
[4] P. A. R. Ade et al., “Planck 2013 Results. XVI. Cosmological Parameters,” 2013, arXiv: 1303.5076
[5] P. J. E. Peebles and B. Ratra, Reviews of Modern Physics, Vol. 75, 2003, p. 559. astro-ph/0207347 v.2.
[6] J. Frieman, M. Turner and D. Huterer, Annual Review of Astronomy and Astrophysics, Vol. 46, 2008, p. 385. arXiv: 0803.0982
[7] R. Bean, S. Carroll and M. Trodden, “Insights into Dark Energy: Interplay between Theory and Observation,” 2011. arXiv: astro-ph/0510059
[8] M. Kunz, Physique, Vol. 13, 2012, p. 539. arXiv:1204. 5482
[9] V. Burdyuzha, et al., Physical Review D, Vol. 55, 1997, pp. R7340-R7344. doi:10.1103/PhysRevD.55.R7340
[10] R. Bousso, General Relativity and Gravitation, Vol. 40, 2008, p. 607, arXiv: 0708.4231. doi:10.1007/s10714-007-0557-5
[11] V. Burdyuzha, Physics-Uspekhi, Vol. 180, 2010, pp. 439-444. doi:10.3367/UFNr.0180.201004j.0439
[12] V. Burdyuzha and G. Vereshkov, Astrophysics and Space Science, Vol. 305, 2006, p. 235.
[13] L. Marochnik, D. Usikov and G. Vereshkov, “Graviton, Ghost, and Instanton Condensation on Horizon Scale of the Universe. DE as a Macroscopic Effect of Quantum Gravity,” 2008, arXiv: 0811.4484
[14] V. Burdyuzha, “QCD Vacuum and the Cosmological Constant,” Proceedings of the Symposium on PASCOS-98, World Scientific, 1999, p. 101.
[15] Ya. Zel’dovich, Physics-Uspekhi, Vol. 95, 1968, p. 209.
[16] T. Jacobson, Physical Review Letters, Vol. 75, 1995, pp. 1260-1263. doi:10.1103/PhysRevLett.75.1260
[17] S. Hawking, Communications in Mathematical Physics, Vol. 43, 1975, pp. 199-220. doi:10.1007/BF02345020
[18] G. Smoot, International Journal of Modern Physics, Vol. 19, 2010, p. 2247. arXiv: 1003.5952.
[19] J. Bekenstein, Physical Review D, Vol. 7, 1973, pp. 2333-2346. doi:10.1103/PhysRevD.7.2333
[20] A. Ali and A. Tawfik, “Modified Newton’s Law of Gravitation Due to Minimal Length in Quantum Gravity,” 2013, arXiv:1301.3508.
[21] C. Balazs and I. Szapidi, “Naturalness of the Vacuum Energy in Holographic Theories,” 2006, arXiv: hep-th/ 0603133.
[22] W. Fischler and L. Susskind, “Holography and Cosmology,” 1998, arXiv: hep-th/9806039.
[23] E. Wright, Publications of the Astronomical Society of the Pacific, Vol. 118, 2006, p. 1711, arXiv: astro-ph/0609593.
[24] V. Burdyuzha, Astronomy Reports, Vol. 56, 2012, pp. 403-409. arXiv: 1003.1025. doi:10.1134/S1063772912050010
[25] M. C. March et al., MNRAS, Vol. 415, 2011, pp. 143-152, arXiv:1101.1521. doi:10.1111/j.1365-2966.2011.18679.x
[26] E. Abdalla, L. Graef and B. Wang, “A Model for Dark Energy Decay,”2012, arXiv: 1202.0499.
[27] J. Sola, Journal of Physics: Conference Series, Vol. 283, 2011, Article ID: 012033. arXiv: 1102.1815.
[28] I. Dymnikova, “Variable Cosmological Constant-Geometry and Physics,” 2000, arXiv: gr-qc/0010016.
[29] W. Chao, M. Gonderinger and M. Ramsey-Musolf, “Higgs Vacuum Stability, Neutrino Mass, and Dark Matter,” 2012, arXiv:1210.0491.
[30] F. Bezrukov, et al., “Higgs Boson Mass and New Physics,”2012, arXiv: 1205.2893.
[31] G. Altarelli, “The SM and SUSY after the 2011 LHC Results,” 2012, arXiv: 1206.1476.
[32] E. Komatsu, et al., The Astrophysical Journal Supplement Series, arXiv: 1212.5226.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.