Behavior of Ultrasonic Attenuation in MnO


Temperature dependence of ultrasonic attenuation and allied parameters are investigated for manganese oxide in the temperature range 300-500 K. These calculations are made for longitudinal and shear waves along the <100>, <110> and <111> crystallographic directions of propagation. If the values of second order elastic constants and density at a particular temperature are known for any substance, one may obtain ultrasonic velocities for longitudinal and shear waves which give an important information about its internal structure, inherent and anharmonic properties. The non-linearity coupling parameters and thermal relaxation time have also obtained for this crystal. In the present investigation, it has been found that phonon-phonon interaction is the dominant cause for ultrasonic attenuation. This study will be useful in characterisation of the material and it will give a clear picture of the behaviour of ultrasonic attenuation in MnO.

Share and Cite:

K. Murti Raju, "Behavior of Ultrasonic Attenuation in MnO," Open Journal of Acoustics, Vol. 3 No. 3A, 2013, pp. 54-59. doi: 10.4236/oja.2013.33A009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. P. Tosu, “Cohesion of Ionic in Born Model,” In: F. Seitz and D. Turnbull, Eds., Solid State Physics, Vol. 16, Academic Press, New York, 1964, pp. 1-120.
[2] W. P. Mason and T. B. Bateman, “Relation between Third-Order Elastic Moduli and the Thermal Attenuation of Ultrasonic Waves in Nonconducting and Metallic Cry- stals,” Journal of the Acoustical Society of America, Vol. 40, No. 4, 1966, pp. 852-862. doi:10.1121/1.1910158
[3] R. C. Hanson, “Attenuation of High Frequency Elastic Waves in LiF,” Journal of Physics and Chemistry of Solids, Vol. 28, No. 3, 1967, pp. 475-483. doi:10.1016/0022-3697(67)90317-4
[4] L. G. Merkulov, R. V. Kovalenok and E. V. Konovodehenko, “Orientation Dependence of the Absorption of Ultrasound in Alkali Halide Crystals,” Soviet Physics, Solid State, Vol. 11, 1970, pp. 2241-2248.
[5] Y. Ya. Avdonin, V. V. Lemanov, I. A. Smirnov and V. V. Tikhonov, “Attenuation of elastic waves by the Akhiezer mechanism in cubic crystals,” Soviet Physics, Solid State, Vol. 14, No. 3, 1972, pp. 747-752.
[6] D. N. Joharapurkar, S. Rajagopalan and B. K. Basu, “Ultrasonic Velocity, Attenuation, and Nonlinearity Constant in Pure and Cd-Doped KCl,” Physical Review B, Vol. 37, No. 6, 1988, pp. 3101-3104. doi:10.1103/PhysRevB.37.3101
[7] S. K. Kor and Kailash, “Temperature Dependence of Ultrasonic Attenuation in Dielectric Crystals,” Nuovo Cimento, Vol. 8D, No. 6, 1986, pp. 615-623.
[8] L. G. Merkulov, R. V. Kovalenok and E. V. Konovodehenko, “Thermal Conductivity of Singal Crystals of Barium, Strontium, Calcium and Magnesium Oxides,” Soviet Physics, Solid State, Vol. 13, No. 1, 1971, pp. 232-233.
[9] S. K. Kor and R. P. Khare, “Temperature Dependence of Ultrasonic Attenuation due to Phonon-Viscosity Mechanism in NaCl,” Acustica, Vol. 56, No. 4, 1984, pp. 280-282.
[10] G. G. Sahasrabudhe and S. D. Lambade,” Temperature Dependence of Ultrasonic Grüneisen Parameter and Ultrasonic Attenuation in Alkali Halides,” Journal of the Acoustical Society of America, Vol. 104, No. 1, 1998, pp. 81-85. doi:10.1121/1.423240
[11] R. Nava and J. Romero, “Ultrasonic Grüneisen Parameter for Non-Conducting Cubic Crystals,” Journal of the Acoustical Society of America, Vol. 64, No. 2, 1978, pp. 529-532. doi:10.1121/1.382004
[12] R. O. Woodruff and H. Ehrenreich, “Absorption of Sound in Insulators,” Physical Review B, Vol. 123, No. 5, 1961, pp. 1553-1559. doi:10.1103/PhysRev.123.1553
[13] Kailash, K. M. Raju and S. K. Shrivastava, “Acoustical investigation in Magnesium Oxide,” Indian Journal of Pure and Applied Physics, Vol. 44, No. 3, 2006, pp. 230- 234.
[14] K. M. Raju, R. K. Srivastava, A. Kumar and S. Devi, “Acoustical Investigation of Lead Chalcogenides,” Physica B, Vol. 405, No. 23, 2010, pp. 4855-4857. doi:10.1016/j.physb.2010.09.018
[15] K.M. Raju, “Temperature Dependent Anharmonic Properties of Lead Chalcogenides,” Acta Physica Polonica A, Vol. 118, No. 4, 2010, p. 600.
[16] K. Brügger, “Thermodynamic Definition of Higher Order Elastic Coefficients,” Physical Review, Vol. 133, No. 6A, 1964, pp. A1611-A1612.doi:10.1103/PhysRev.133.A1611
[17] G. Leibfried and H. Hahn, “Zur Temperaturabhangigkeit der Elastischen Konstanten von Alkalihalogenidkristallen,” Zeitschrift für Physik, Vol. 150, No. 4, 1958, pp. 497-525. doi:10.1007/BF01418637?
[18] G. Leibfried and W. Ludwig, “Theory of Anharmonic Effects in Crystals,” In: F. Seitz and D. Turnbull, Eds., Solid State Physics, Academic Press, New York, 1961, pp. 276-288.
[19] T. B. Bateman and W. P. Mason, “Ultrasonic Wave Propagation in Pure Silicon and Germanium,” Journal of the Acoustical Society of America, Vol. 36, No. 4, 1964, pp. 645-655.
[20] W. P. Mason, “Relation between Thermal Ultrasonic Attenuation and Third-Order Elastic Moduli for Waves along the 〈110〉 Axis of a Crystal,” Journal of the Acoustical Society of America, Vol. 42, No. 1, 1967, pp. 253-258. doi:10.1121/1.1910561
[21] W. P. Mason, “Effect of Impurities and phonon processes on the ultrasonic attenuation of Germanium, Crystal Quartz and Silicon,” In: W. P. Mason, Ed., Physical Acoustics, Vol III B, Academic Press, New York, 1965, pp. 235-285.
[22] A. Akhiezer, “On the Absorption of Sound in Solids,” Journal of Physics (Moscow), Vol. 1, No. 1, 1939, pp. 277-287.
[23] W. P. Mason, “Wave Propagation in Fluids and Normal Solids,” In: W. P. Mason, Ed., Physical Acoustics-Principles and Methods, Academic Press, New York, 1964, Vol. 1A, pp. 1-110.
[24] M. Nandanpawar and S. Rajagopalan, “Ultrasonic Attenuation in Copper and the Temperature Dependence of the Nonlinearity Parameter,” Physical Review B, Vol. 18, No. 10, 1988, pp. 5410-5412. doi:10.1103/PhysRevB.18.5410
[25] S. S. Shukla and S. S. Yun, “Ultrasonic Attenuation in GaAs,” Journal of the Acoustical Society of America, Vol. 70, No. 6, 1981, pp. 1713-1716. doi:10.1121/1.387238
[26] S. K. Kor and R. K. Singh, “Ultrasonic attenuation in normal valence semiconductors,” Acustica, Vol. 80, No. 1, 1994, pp. 83-87.
[27] H. H. Barrett and M. G. Holland, “Critique of Current Theories of Akhieser Damping in Solids,” Physical Review B, Vol. 1, No. 6, 1970, pp. 2538-2544. doi:10.1103/PhysRevB.1.2538
[28] K. Brugger, “Generalized Grüneisen Parameters in the Anisotropic Debye Model,” Physical Review A, Vol. 137, No. 6A, 1965, pp. 1826-1827.
[29] D. E. Gray, “American Institute of Physics Handbook,” McGraw-Hill, New York, 3rd Edition, 1972.
[30] A. V. Petrov, N. S. Tsypkina and Yu. A. Lonachev, Soviet Physics, Solid State, Vol. 16, 1974, pp. 39- 42.
[31] J. T. Lewis, A. Lehoczky and C. V. Briscoe, “Elastic Constants of the Alkali Halides at 4.2°K,” Physical Review, Vol. 161, No. 3, 1967, pp. 877-887 (1967). doi:10.1103/PhysRev.161.877
[32] W. A. Bensch, “Third-Order Elastic Constants of NaF,” Physical Review B, Vol. 6, No. 4, 1972, pp. 1504-1509. doi:10.1103/PhysRevB.6.1504
[33] R. Nava, M. P. Vecchi, J. Romero, and B. Fernandez, “Akhiezer Damping and the Thermal Conductivity of Pure and Impure Dielectrics,” Physical Review B, Vol. 14, No. 2, 1976, pp. 800-807. doi:10.1103/PhysRevB.14.800
[34] D. singh and R. R. Yadav, “The Thermal Conductivity and Ultrasonic Absorption in Dielectric Crystals,” Journal of Pure and Applies Ultrasonics, Vol. 25, No. 3, 2003, p. 82.
[35] K.M. Raju, “Effect of Temperature on Non-Destructive Wave Propagation in Potassium Halides,” Physica B, Vol. 407, No. 17, 2012, pp. 3463-3466. doi:10.1016/j.physb.2012.05.002
[36] K. M. Raju, “Anharmonic Properties of TmTe,” European Physical Journal B, Vol. 84, No. 3, 2011, pp. 409-417.
[37] K. M. Raju, “High Temperature Elastic Anharmonicity in Lanthanum Mono-Chalcogenides,” Canadian Journal of Physics, Vol. 89, No. 7, 2011, pp. 817-824. doi:10.1139/p11-062
[38] K. M. Raju, “Anharmonic Properties of Potassium Halide Crystals,” Turkish Journal of Physics, Vol. 35, 2011, pp. 323-340.
[39] K. M. Raju, “Anharmonic Properties of Materials,” Lap Lambert Academic Publishers, Germany, 2013.
[40] K. M. Raju, “Elastic Constants, Structural Parameters and Elastic Perspectives of Thorium Mono-Chalcogenides in Temperature Sensitive Region,” In: A. Tiwari and H. Ko- bayashi, Eds., Responsive Materials and Methods, Chapter 14, Wiley-Scrivener Publishing, New York (in press).

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.