Share This Article:

Preparation of Bi4Ti3O12 (BIT) Ceramics via a High-Energy Ball Milling Process Doped with Multi-Walled Carbon Nanotubes (MWNTs)

Abstract Full-Text HTML Download Download as PDF (Size:1871KB) PP. 549-555
DOI: 10.4236/msa.2013.49067    4,238 Downloads   6,088 Views   Citations

ABSTRACT

We prepared the Nano-sized bismuth titanate Bi4Ti3O12 (BIT) powders, through a high-energy ball milling process from their oxides Bi2O3 and TiO2. This BIT phase can be formed after a milling process for 40 min. With an increasing milling time, this particle size of mixture is gradually reduced, thus, we have mostly an amorphous phase. The BIT ceramics were duly obtained by sintering the synthesized powders at temperatures ranging from 850°C to 1000°C. The BIT ceramics sintered at 1020°C for 1 h, exhibiting a density with 7.52 g/cm3 of a crystaline phase and a dielectric of K = 288.11 (100 Hz), as well as a dielectric loss of 0.05 (100 kHz). The High-energy ball milling process is a promising way to prepare BIT ceramics. After the preparation of the BIT, we doped it with the Multi-Walled Carbon Nanotubes which are properly obtained by a chemical vapour deposition (CVD), using nickel as a catalyst, as well as using acetilene at 720°C, and then proceeded with the dielectric and optical measurements.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Pinheiro, G. Saraiva, J. Filho and A. Sombra, "Preparation of Bi4Ti3O12 (BIT) Ceramics via a High-Energy Ball Milling Process Doped with Multi-Walled Carbon Nanotubes (MWNTs)," Materials Sciences and Applications, Vol. 4 No. 9, 2013, pp. 549-555. doi: 10.4236/msa.2013.49067.

References

[1] I. F. Dorrian, R. E. Newnham and K. K. Smith, “Crystal Structure of Bi4Ti3O12,” Ferroelectrics, Vol. 3, No. 1, 1971, pp. 17-27. doi:10.1080/00150197108237680
[2] S. E. Cummings and L. E. Cross, “Electrical and Optical Properties of Ferroelectric Bi4Ti3O12 Single Crystals,” Journal of Applied Physics, Vol. 3, No. 5, 1968, pp. 2268-2274. doi:10.1063/1.1656542
[3] H. S. Shulman, M. Testorf, D. Damjanovic, N. Setter and M crostructure, “Electrical Conductivity and Piezoelectric Propeties of Bismuth Titanate,” Journal of the American Ceramic Society, Vol. 79, No. 12, 1996, pp. 3214-3218.
[4] M. Villegas, A. C. Caballero, C. Moure and P. Duran, “Factors affecting the electrical conductivity ~ donorDoped Bi4Ti3O12 piezoelectric ceramics,” Journal of the American Ceramic Society, Vol. 82, No. 9, 1999, pp. 2411-2416.
[5] A. Q. Iiang, H. G. Li and L. D. Zhang, “Dielectric Study Inanocrystalline Prepared by Chemical Doprecipitation,” Journal of Applied Physics, Vol. 83, No. 9, 1998, pp. 4878-4883. doi:10.1063/1.367287
[6] S. H. Hong, I. A. Horn, S. Trolier-McKinstry and G. L. Messing, “Dielectric and Ferroelectric Properties of TaDoped Bismuth Titanate,” Journal of Materials Science Letters, Vol. 19, No. 18, 2000, pp. 1661-1664. doi:10.1023/A:1006722312423
[7] I. A. Horn, S. C. Zhang, U. Selvaraj and G. L. Messing, Trolier-McKinstry, Templated Grain Growth of Textured Bismuth Titanate,” Journal of the American Ceramic Society, Vol. 82, No. 4, 1999, pp. 921-926. doi:10.1111/j.1151-2916.1999.tb01854.x
[8] T. Takeuchi, T. Tani and Y. Saito, “Unidirectionally Texture CaBi4Ti4O5 Ceramics by the Reactive Templated Grain Growl with an Extrusion,” Japanese Journal of Applied Physics, Vol. 39, 2000, pp. 5577-5584. doi:10.1143/JJAP.39.5577
[9] P. S. Gilman and I. S. Benjamin, “Mechanical Alloying,” Annual Review of Materials Research, Vol. 13, 1983, pp. 279-300. doi:10.1146/annurev.ms.13.080183.001431
[10] I. Z. Iiang, F. W. Poulsen and S. Morup, “Structure and Thermal Stability of Nanostructured Iron-Doped Zirconia Prepared by High-Energy Ball Milling,” Journal of Materials Research, Vol. 14, No. 4, 1999, pp. 1343-1352. doi:10.1557/JMR.1999.0183
[11] J. Z. Iiang, R. Lin, W. Lin, K. Nielsen, S. Morup, K. DamJohansen and R. Clasen, “Gas-Sensitive Properties and Structure of Nanostructured (a-Fe2O3)SnO2)x Materials Prepared by Mechanical Alloying,” Journal of Physics D: Applied Physics, Vol. 30, No. 10, 1997, pp. 1459-1467. doi:10.1088/0022-3727/30/10/012
[12] M. Simoneau, G. L. Esperance, M. L. Trudeau and R. Schulz, “Structural and Magnetic Characterization of Granular Yba2cu3o7 nanocrystalline Powder,” Journal of Materials Research, Vol. 9, No. 3, 1994, pp. 535-540. doi:10.1557/JMR.1994.0535
[13] G. Nicoara, D. Fratiloiu, M. Nogues, J. L. Dormann, F. Vasiliu, “Ni-Zn Ferrite Nanoparticles Prepared by Ball Milling,” Materials Science Forum, Vol. 235-238, No. 1, 1997, pp. 145-150. doi:10.4028/www.scientific.net/MSF.235-238.145
[14] J. Xue, D. Wan, S. E. Lee and I. Wang, “Mechanochemical Synthesis of Lead Zirconatetitanate from Mixed Oxides,” Journal of the American Ceramic Society, Vol. 82, No. 7, 1999, pp. 1687-1692. doi:10.1111/j.1151-2916.1999.tb01987.x
[15] L. B. Kong, W. Zhu and O. K. Tan, “Preparation and Characterization of Pb(ZrO5TiO4)O3 Ceramics from HighEnergy Ball Milled Powders,” Materials Letters, Vol. 42, No. 4, 2000, pp. 232-239. doi:10.1016/S0167-577X(99)00190-1
[16] J. Wang, l. Xue, D. Wan and W. Ng, “Mechanochemical Fabrication of Single Phase PMN of Perovskite Structure,” Solid State Ionics, Vol. 124, No. 3-4,1999, pp. 271-279.
[17] M. Villegas, A. C. Caballero, C. Moure, P. Duran, J. F. Fernandez and R. E. Newnham, “Influence of Processing Parameters on the Sintering and Electrical Properties of Pb(Zn1/3Nb2/3)O3-Based Ceramics,” Journal of the American Ceramic Society, Vol. 83, No. 1, 2000, pp. 141-146. doi:10.1111/j.1151-2916.2000.tb01162.x
[18] B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang and C. M. Lieber, “Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources,” Nature, Vol. 449, No. 7164, 2007, pp. 885-888. doi:10.1038/nature06181
[19] A. Javey, S.-W. Nam, R. S. Friedman, H. Yan and C. M. Lieber, “Layer-By-Layer Assembly of Nanowires for Three-Dimensional, Multifunctional Electronics,” Nano Letter, Vol. 7, No. 3, 2007, pp. 773-777.
[20] A. G. Pinheiro, F. M. M. Pereira, M. R. P. Santos, H. H. B. Rocha and A. S. B. Sombra, “Electric Properties of Bi4Ti3O12(BIT)-CaCu3Ti4O12 (CCTO) Composite Substrates for High Dielectric Constant Devices,” Journal of Materials Science, Vol. 42, No. 6, 2007, pp. 2112-2120.
[21] Y.-II Kim; M. K. Jeon, “Combined Structural Refinement of Bi4Ti3O12 Using X-Ray and Neutron Powder Diffraction Data,” Materials Letters, Vol. 58, No. 12-13, 2004, pp.1889-1893.
[22] L. B. Kong, J. Ma, W. Zhu and O. K. Tan, “Preparation of Bi4Ti3O12 Ceramics via a High-Energy Ball Milling Process,” Materials Letters, Vol. 51, No. 2, 2001, pp. 108-114. doi:10.1016/S0167-577X(01)00274-9
[23] S. E. Cummings and L. E. Cross, “Electrical and Optical Properties of Ferroelectric Bi4Ti3O12 Single Crystals,” Journal of Applied Physics, Vol. 39, No. 5, 1968, pp. 2268-2274. doi:10.1063/1.1656542
[24] A. Q. Jiang, H. G. Li and L. D. Zhang, “Dielectric Study in Nanocrystalline Prepared by Chemical Doprecipitation,” Journal of Applied Physics, Vol. 83, No. 9, 1998, pp. 4878-4883. doi:10.1063/1.367287
[25] W. L. Liua, H. R. Xia, H. Hand and X. Q. Wang, “Structural and Dielectrical Properties of Bismuth Titanate Nanoparticles Prepared by Metalorganic Decomposition Method,” Journal of Crystal Growth, Vol. 269, No. 3-4, 2004, p. 499.
[26] Joint Committee on Powder Diffraction Standards (JCPDS), “International Center for Diffraction Data,” Newton Square, 1995.
[27] P. T. C. Freire, V. Lemos, J. A. Lima Jr., G. D. Saraiva, P. S. Pizani, R. O.Nascimento, N. M. P. S. Ricardo, J. Mendes Filho and A. G. Souza Filho, “Pressure Effects on Surfactant Solubilized Single-Wall Carbon Nanotubes,” Physica Status Solidi (b), Vol. 244, No. 1, 2007, pp. 105-109.
[28] O. Yamaguchi, N. Maruyama and K. Hirota, “Formation and Characterization of Alkoxy-Derived Bi4Ti3O12,” British Ceramic Transactions and Journal, Vol. 90, 1991, pp. 111-113.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.