16p11.2 is required for neuronal polarity


Since Autism Spectrum Disorder (ASD) is strongly associated with chromosomal abnormalities of 16p11.2, and Autism has been linked to neuronal polarity defect, our study aimed to explore the role of 16p11.2 genes in regulating neuronal polarity. We performed a neuronal polarity assay in a high throughput manner for candidate genes at 16p11.2. Our most interesting finding was that three 16p11.2 candidate genes, DOC2a, Tbx-6 and KIF 22, affected neuronal polarity. Our research, for the first time, indicates a novel association between 16p11.2 and neuronal polarity. Our results support the hypothesis that 16p11.2 is required for neuronal polarity. Our research provides new important insights into molecular mechanisms underlying the tight association between 16p11.2 and several neural developmental disorders, including autism, epilepsy, mental retardation and schizophrenia.

Share and Cite:

Li, Z. , He, X. and Feng, J. (2013) 16p11.2 is required for neuronal polarity. World Journal of Neuroscience, 3, 221-227. doi: 10.4236/wjns.2013.34029.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Craig, A. and Banker, G. (1994) Neuronal polarity. Annual Review of Neuroscience, 17, 267-310. http://dx.doi.org/10.1146/annurev.ne.17.030194.001411
[2] Arimura, N. and Kaibuchi, K. (2007) Neuronal polarity: From extracellular signals to intracellular mechanisms. Nature Review of Neuroscience, 8, 194-205. http://dx.doi.org/10.1038/nrn2056
[3] Dotti, C.G., Sullivan, C.A. and Banker, G.A. (1988) The establishment of polarity by hippocampal neurons in culture. Journal of Neuroscience, 8, 1454-1468.
[4] Goslin, K. and Banker, G. (1989) Experimental observation on the development of polarity by hippocampal neurons in culture. Journal of Cell Biology, 108, 1506-1516. http://dx.doi.org/10.1083/jcb.108.4.1507
[5] Beffert, U., Dillon, G.M., Sullivan, J.M., Stuart, C.E., Gilbert, J.P., Kambouris, J.A. and Ho, A. (2012) Microtubule plus-end tracking protein CLASP2 regulates neuronal polarity and synaptic function. Journal of Neuroscience, 32, 13906-13916. http://dx.doi.org/10.1523/JNEUROSCI.2108-12.2012
[6] Amato, S., Liu, X., Zheng, B., Cantley, L., Rakic, P. and Man, H.Y. (2011) AMP-activated protein kinase regulates neuronal polarization by interfering with PI 3-kinase localization. Science, 332, 247-251. http://dx.doi.org/10.1126/science.1201678
[7] Gartner, A., Fornasiero, E.F., Munck, S., Vennekens, K., Seuntjens, E., Huttner, W.B., Valtorta, F. and Dotti, C.G. (2012) N-cadherin specifies first asymmetry in developing neurons. The EMBO Journal, 31, 1893-1903. http://dx.doi.org/10.1038/emboj.2012.41
[8] Lee, C.Y., Jaw, T., Tseng, H.C., Chen, I.C. and Liou, H.H. (2012) Lovastatin modulates glycogen synthase kinase-3β pathway and inhibits mossy fiber sprouting after pilocarpine-induced status epilepticus. PLoS One, 7, Article ID: e38789. http://dx.doi.org/10.1371/journal.pone.0038789
[9] Shelly, M. and Poo, M.M. (2011) Role of LKB1-SAD/ MARK pathway in neuronal polarization. Developmental Neurobiology, 71, 508-527. http://dx.doi.org/10.1002/dneu.20884
[10] Baas, S., Sharrow, M., Kotu, V., Middleton, M., Nguyen, K., Flanagan-Steet, H., Aoki, K. and Tiemeyer, M. (2011) Sugar-free frosting, a homolog of SAD kinase, drives neural-specific glycan expression in the Drosophila embryo. Development, 138, 553-563. http://dx.doi.org/10.1242/dev.055376
[11] Durand, C.M., Perroy, J., Loll, F., Perrais, D., Fagni, L., Bourgeron, T., Montcouquiol, M. and Sans, N. (2012) SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Molecular Psychiatry, 17, 71-84. http://dx.doi.org/10.1038/mp.2011.57
[12] Morita, T., Mayanagi, T. and Sobue, K. (2012) Caldesmon regulates axon extension through interaction with myosin II. Journal of Biological Chemistry, 287, 3349-3356. http://dx.doi.org/10.1074/jbc.M111.295618
[13] Baudouin, S.J., Gaudias, J., Gerharz, S., Hatstatt, L., Zhou, K., Punnakkal, P., Tanaka, K.F., Spooren, W., Hen, R.D., Zeeuw, C.I., Vogt, K. and Scheiffele, P. (2012) Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science, 338, 128-132. http://dx.doi.org/10.1126/science.1224159
[14] Weiss, L.A., Shen. Y., Korn. J.M., Arking, D.E., Miller, D.T., Fossdal, R., Saemundsen, E., Stefansson, H., Ferreira, M.A., Green, T., Platt, O.S., Ruderfer, D.M., Walsh, C.A., Altshuler, D., Chakravarti, A., Tanzi, R.E., Stefansson, K., Santangelo, S.L., Gusella, J.F., Sklar, P., Wu, B.L., Daly, M.J. and Autism Consortium (2008) Association between microdeletion and microduplication at 16p11.2 and autism. The New England Journal of Medicine, 358, 667-675. http://dx.doi.org/10.1056/NEJMoa075974
[15] Marshall, C.R., Noor, A., Vincent, J.B., Lionel, A.C., Feuk, L., Skaug, J., Shago, M., Moessner, R., Pinto, D., Ren, Y., Thiruvahindrapduram, B., Fiebig, A., Schreiber, S., Friedman, J., Ketelaars, C.E., Vos, Y.J., Ficicioglu, C., Kirkpatrick, S., Nicolson, R., Sloman, L., Summers, A., Gibbons, C.A., Teebi, A., Chitayat, D., Weksberg, R., Thompson, A., Vardy, C., Crosbie, V., Luscombe, S., Baatjes, R., Zwaigenbaum, L., Roberts, W., Fernandez, B., Szatmari, P. and Scherer, S.W. (2008)Structural variation of chromosomes in autism spectrum disorder. The American Journal of Human Genetics, 82, 477-488. http://dx.doi.org/10.1016/j.ajhg.2007.12.009
[16] Bedoyan, J.K., Kumar, R.A., Sudi, J., Silverstein, F., Ackley, T., Iyer, R.K., Christian, S.L. and Martin, D.M. (2010) Duplication 16p11.2 in a child with infantile seizure disorder. American Journal of Medical Genetics Part A, 152A, 1567-1574.
[17] Shimojima, K., Inoue, T., Fujii, Y., Ohno, K. and Yamamoto, T. (2009) A familial 593-kb microdeletion of 16p11.2 associated with mental retardation and hemivertebrae. The European Journal of Medical Genetics, 52, 433-435. http://dx.doi.org/10.1016/j.ejmg.2009.09.007
[18] McCarthy, S.E., Makarov, V., Kirov, G., Addington, A.M., McClellan, J., Yoon, S., Perkins, D.O., Dickel, D.E., Kusenda, M., Krastoshevsky, O., Krause, V., Kumar, R.A., Grozeva, D., Malhotra, D., Walsh, T., Zackai, E.H., Kaplan, P., Ganesh, J., Krantz, I.D., Spinner, N.B., Roccanova, P., Bhandari, A., Pavon, K., Lakshmi, B., Leotta, A., Kendall, J., Lee, Y.H., Vacic, V., Gary, S., Iakoucheva, L.M., Crow, T.J., Christian, S.L., Lieberman, J.A., Stroup, T.S., Lehtimaki, T., Puura, K., Haldeman-Englert, C., Pearl, J., Goodell, M., Willour, V.L., Derosse, P., Steele, J., Kassem, L., Wolff, J., Chitkara, N., McMahon, F.J., Malhotra, A.K., Potash, J.B., Schulze, T.G., Nothen, M.M., Cichon, S., Rietschel, M., Leibenluft, E., Kustanovich, V., Lajonchere, C.M., Sutcliffe, J.S., Skuse, D., Gill, M., Gallagher, L., Mendell, N.R., Craddock, N., Owen, M.J., O’Donovan, M.C., Shaikh, T.H., Susser, E., Delisi, L.E., Sullivan, P.F., Deutsch, C.K., Rapoport, J., Levy, D.L., King, M.C. and Sebat, J. (2009) Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics, 41, 1223-1227. http://dx.doi.org/10.1038/ng.474
[19] Kumar, R.A., KaraMohamed, S., Sudi, J., Conrad, D.F., Brune, C., Badner, J.A., Gilliam, T.C., Nowak, N.J., Cook Jr., E.H., Dobyns, W.B. and Christian, S.L. (2008) Recurrent 16p11.2 microdeletions in autism. Human Molecular Genetics, 17, 628-638. http://dx.doi.org/10.1093/hmg/ddm376
[20] Kumar, R.A., Marshall, C.R., Badner, J.A., Babatz, T.D., Mukamel, Z., Aldinger, K.A., Sudi, J., Brune, C.W., Goh, G., Karamohamed, S., Sutcliffe, J.S., Cook, E.H., Geschwind, D.H., Dobyns, W.B., Scherer, S.W. and Christian, S.L. (2009) Association and mutation analyses of 16p11.2 autism candidate genes. PLoS One, 4, Article ID: e4582. http://dx.doi.org/10.1371/journal.pone.0004582
[21] Zufferey, F., Sherr, E.H., Beckmann, N.D., Hanson, E., Maillard, A.M., Hippolyte, L., Macé, A., Ferrari, C., Kutalik, Z., Andrieux, J., Aylward, E., Barker, M., Bernier, R., Bouquillon, S., Conus, P., Delobel, B., Faucett, W.A., Goin-Kochel, R.P., Grant, E., Harewood, L., Hunter, J.V., Lebon, S., Ledbetter, D.H., Martin, C.L., Mannik, K., Martinet, D., Mukherjee, P., Ramocki, M.B., Spence, S.J., Steinman, K.J., Tjernagel, J., Spiro, J.E., Reymond, A., Beckmann, J.S., Chung, W.K., Jacquemont, S. and Simons VIP Consortium, 16p11.2 European Consortium (2012) A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders. Journal of Medical Genetics, 49, 660-668. http://dx.doi.org/10.1136/jmedgenet-2012-101203
[22] Kaech, S. and Banker, G. (2006)Culturing hippocampal neurons. Nature Protocol, 1, 2406-2415. http://dx.doi.org/10.1038/nprot.2006.356
[23] Kempermann, G. (2012) Neuroscience. Youth culture in the adult brain. Science, 335, 1175-11176. http://dx.doi.org/10.1126/science.1219304
[24] Zeitelhofer, M., Karra, D., Vessey, J.P., Jaskic, E., Macchi, P., Thomas, S., Riefler, J., Kiebler, M. and Dahm, R. (2009) High-efficiency transfection of short hairpin RNAs-encoding plasmids into primary hippocampal neurons. Journal of Neuroscience Research, 87, 289-300. http://dx.doi.org/10.1002/jnr.21840
[25] Golzio, M., Escoffre, J.M. and Teissié, J. (2012) shRNAmediated gene knockdown in skeletal muscle. Methods in Molecular Biology, 798, 491-501. http://dx.doi.org/10.1007/978-1-61779-343-1_29
[26] Zeitelhofer, M., Vessey, J.P., Xie, Y., Tübing, F., Thomas, S., Kiebler, M. and Dahm, R. (2007) High-efficiency transfection of mammalian neurons via nucleofection. Nature Protocol, 2, 1692-1704. http://dx.doi.org/10.1038/nprot.2007.226
[27] Fukata, Y., Kimura, T. and Kaibuchi, K. (2002) Axon specification in hippocampal neurons. Neuroscience Research, 43, 305-315. http://dx.doi.org/10.1016/S0168-0102(02)00062-7
[28] Nimchinsky, E.A., Sabatini, B.L. and Svoboda, K. (2002) Structure and function of dendritic spines. Annual Review of Physiology, 64, 313-353. http://dx.doi.org/10.1146/annurev.physiol.64.081501.160008
[29] Shiow, L.R., Paris, K., Akana, M.C., Cyster, J.G., Sorensen, R.U. and Puck, J.M. (2009) Severe combined immunodeficiency (SCID) and attention deficit hyperactivity disorder (ADHD) associated with a Coronin-1A mutation and a chromosome 16p11.2 deletion. Clinical Immunology, 131, 24-30. http://dx.doi.org/10.1016/j.clim.2008.11.002
[30] Shinawi, M., Liu, P., Kang, S.H., Shen, J., Belmont, J.W., Scott, D.A., Probst, F.J., Craigen, W.J., Graham, B.H., Pursley, A., Clark, G., Lee, J., Proud, M., Stocco, A., Rodriguez, D.L., Kozel, B.A., Sparagana, S., Roeder, E.R., McGrew, S.G., Kurczynski, T.W., Allison, L.J., Amato, S., Savage, S., Patel, A., Stankiewicz, P., Beaudet, A.L., Cheung, S.W. and Lupski, J.R. (2010) Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. Journal of Medical Genetics, 47, 332-341. http://dx.doi.org/10.1136/jmg.2009.073015
[31] Bachmann-Gagescu, R., Mefford, H.C., Cowan, C., Glew, G.M., Hing, A.V., Wallace, S., Bader, P.I., Hamati, A., Reitnauer, P.J., Smith, R., Stockton, D.W., Muhle, H., Helbig, I., Eichler, E.E., Ballif, B.C., Rosenfeld, J. and Tsuchiya, K.D. (2010) Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are associated with developmental delay and obesity. Genetic Medicine, 12, 641-647. http://dx.doi.org/10.1097/GIM.0b013e3181ef4286
[32] Blaker-Lee, A., Gupta, S., McCammon, J.M., De Rienzo, G. and Sive, H. (2012) Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. Disease Models. & Mechanisms, 5, 834-851. http://dx.doi.org/10.1242/dmm.009944
[33] Orita, S., Sasaki, T., Naito, A., Komuro, R. and Ohtsuka, T. (1995) Doc2: A novel brain protein having two repeated C2-like domains. Biochemical and Biophysical Research Communication, 206, 439-448. http://dx.doi.org/10.1006/bbrc.1995.1062
[34] Mochida, S., Orita, S., Sakaguchi, G., Sasaki, T. and Takai, Y. (1998) Role of the Doc2 alpha-Munc13-1 interaction in the neurotransmitter release process. Proceedings of the National Academy of Sciences of the United States of America, 95, 11418-11422. http://dx.doi.org/10.1073/pnas.95.19.11418
[35] Yao, J., Gaffaney, J.D., Kwon, S.E. and Chapman, E.R. (2011) Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. Cell, 147, 666-677. http://dx.doi.org/10.1016/j.cell.2011.09.046
[36] Sakaguchi, G., Manabe, T., Kobayashi, K., Orita, S. and Sasaki, T. (1999) Doc2alpha is an activity-dependent modulator of excitatory synaptic transmission. European Journal of Neuroscience, 11, 4262-4268. http://dx.doi.org/10.1046/j.1460-9568.1999.00855.x
[37] Suzuki, T., Takeuchi, J., Koshiba-Takeuchi, K. and Ogura, T. (2004) Tbx Genes specify posterior digit identity through Shh and BMP signaling. Developmental Cell, 6, 43-53. http://dx.doi.org/10.1016/S1534-5807(03)00401-5
[38] Pereira, L.A., Wong, M.S., Lim, S.M., Sides, A., Stanley, E.G. and Elefanty, A.G. (2011) Brachyury and related Tbx proteins interact with the Mixl1 homeodomain protein and negatively regulate Mixl1 transcriptional activity. PLoS One, 6, Artcile ID: e28394. http://dx.doi.org/10.1371/journal.pone.0028394
[39] Moraes, F., Novoa, A., Jerome-Majewska, L.A., Papaioannou, V.E. and Mallo, M. (2005) Tbx1 is required for proper neural crest migration and to stabilize spatial patterns during middle and inner ear development. Mechanisms of Development, 122, 199-212. http://dx.doi.org/10.1016/j.mod.2004.10.004
[40] Song, M.R., Shirasaki, R., Cai, C.L., Ruiz, E.C., Evans, S.M., Lee, S.K. and Pfaff, S.L. (2006) T-Box transcription factor Tbx20 regulates a genetic program for cranial motor neuron cell body migration. Development, 133, 4945-4955. http://dx.doi.org/10.1242/dev.02694
[41] Song, A.H., Wang, D., Chen, G., Li, Y., Luo, J., Duan, S. and Poo, M.M. (2009) A selective filter for cytoplasmic transport at the axon initial segment. Cell, 136, 1148-1160. http://dx.doi.org/10.1016/j.cell.2009.01.016
[42] Nakata, T. and Hirokawa, N. (2003) Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. Journal of Cell Biology, 162, 1045-1055. http://dx.doi.org/10.1083/jcb.200302175
[43] Kamal, A., Stokin, G.B., Yang, Z., Xia, C.H. and Goldstein, L.S. (2000).Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron, 28, 449-459. http://dx.doi.org/10.1016/S0896-6273(00)00124-0
[44] Setou, M., Nakagawa, T., Seog, D.H. and Hirokawa, N. (2000) Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science, 288, 1796-1802. http://dx.doi.org/10.1126/science.288.5472.1796
[45] Guillaud, L., Setou, M. and Hirokawa, N. (2003) KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. Journal of Neuroscience, 23, 131-140.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.