Thermodynamic Aspects of the Graphene/Graphane/Hydrogen Systems: Relevance to the Hydrogen On-Board Storage Problem

Abstract

The present analytical review is devoted to the current problem of thermodynamic stability and related thermodynamic characteristics of the following graphene layers systems: 1) double-side hydrogenated graphene of composition CH (theoretical graphane) (Sofo et al. 2007) and experimental graphane (Elias et al. 2009); 2) theoretical single-side hydrogenated graphene of composition CH; 3) theoretical single-side hydrogenated graphene of composition C2H (graphone); 4) experimental hydrogenated epitaxial graphene, bilayer graphene and a few layers of graphene on SiO2 or other substrates; 5) experimental and theoretical single-external side hydrogenated single-walled carbon nanotubes, and experimental hydrofullerene C60H36; 6) experimental single-internal side hydrogenated (up to C2H or CH composition) graphene nanoblisters with intercalated high pressure H2 gas inside them, formed on a surface of highly oriented pyrolytic graphite or epitaxial graphene under the atomic hydrogen treatment; and 7) experimental hydrogenated graphite nanofibers-multigraphene with intercalated solid H2 nano-regions of high density inside them, relevant to solving the problem of hydrogen on-board storage (Nechaev 2011-2012).

Share and Cite:

Y. Nechaev and T. Veziroglu, "Thermodynamic Aspects of the Graphene/Graphane/Hydrogen Systems: Relevance to the Hydrogen On-Board Storage Problem," Advances in Materials Physics and Chemistry, Vol. 3 No. 5, 2013, pp. 255-280. doi: 10.4236/ampc.2013.35037.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] [1] A. K. Geim and K. S. Novoselov, “The Rise Of Graphene,” Nature Materials, Vol. 6, No. 3, 2007, pp. 183-191.
[2] V. Palerno, “Not a Molecule, Not a Polymer, Not a Substrate…The Many Faces of Graphene as a Chemical Platform,” Chemical Communications, Vol. 49, No. 28, 2013, pp. 2848-2857.
[3] J. O. Sofo, A. S. Chaudhari and G. D. Barber, “Graphane: A Two-Dimensional Hydrocarbon,” Physical Review B, Vol. 75, No. 15, 2007, Article ID: 153401. doi:10.1103/PhysRevB.75.153401
[4] L. A. Openov and A. I. Podlivaev, “Thermal Desorption of Hydrogen from Graphane,” Technical Physics Letters, Vol. 36, No. 1, 2010, pp. 31-33. doi:10.1134/S1063785010010104
[5] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim and K. S. Novoselov, “Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane,” Science, Vol. 323, No. 5914, 2009, pp. 610-626. doi:10.1126/science.1167130
[6] L. A. Openov and A. I. Podlivaev, “Thermal Stability of Single-Side Hydrogenated Graphene,” Technical Physics, Vol. 57, No. 11, 2012, pp. 1603-1605. doi:10.1134/S1063784212110175
[7] B. S. Pujari, S. Gusarov, M. Brett and A. Kovalenko, “Single-Side-Hydrogenated Graphene: Density Functional Theory Predictions,” Physical Review B, Vol. 84, No. 4, 2011, Article ID: 041402. doi:10.1103/PhysRevB.84.041402
[8] H. J. Xiang, E. J. Kan, S.-H. Wei, X. G. Gong and M.-H. Whangbo, “Thermodynamically Stable Single-Side Hydrogenated Grapheme,” Physical Review B, Vol. 82, No. 16, 2010, Article ID: 165425. doi:10.1103/PhysRevB.82.165425
[9] A. I. Podlivaev and L. A. Openov, “On Thermal Stability of Graphone,” Semiconductors, Vol. 45, No. 7, 2011, pp. 958-961. doi:10.1134/S1063782611070177
[10] A. Nikitin, X. Li, Z. Zhang, H. Ogasawara, H. Dai and A. Nilsson, “Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C-H Bonds,” Nano Letters, Vol. 8, No. 1, 2008, pp. 162-167. doi:10.1021/nl072325k
[11] A. Nikitin, L.-A. Naslund, Z. Zhang and A. Nillson, “C-H Bond Formation at the Graphite Surface Studied with Core Level Spectroscopy,” Surface Science, Vol. 602, No. 14, 2008, pp. 2575-2580. doi:10.1016/j.susc.2008.06.012
[12] C. W. Bauschlicher Jr. and C. R. So, “High Coverages of Hydrogen on (10.0), (9.0) and (5.5) Carbon Nanotubes,” Nano Letters, Vol. 2, No. 4, 2002, pp. 337-341. doi:10.1021/nl020283o
[13] S. M. Pimenova, S. V. Melkhanova, V. P. Kolesov and A. S. Lobach, “The Enthalpy of Formation and C-H Bond Enthalpy Hydrofullerene C60H36,” The Journal of Physical Chemistry B, Vol. 106, No. 9, 2002, pp. 2127-2130. doi:10.1021/jp012258x
[14] Y. S. Nechaev, “Carbon Nanomaterials, Relevance to the Hydrogen Storage Problem,” Journal of Nano Research, Vol. 12, 2010, pp. 1-44. doi:10.4028/www.scientific.net/JNanoR.12.1
[15] Z. Waqar, “Hydrogen Accumulation in Graphite and Etching of Graphite on Hydrogen Desorption,” Journal of Materials Science, Vol. 42, No. 4, 2007, pp. 1169-1176. doi:10.1007/s10853-006-1453-1
[16] Y. S. Nechaev, O. K. Alexeeva and A. Oechsner, “Analytical Review on the Hydrogen Multilayer Intercalation in Carbonaceous Nanostructures: Relevance for Development of Super-Adsorbents for Fuel-Cell-Powered Vehicles,” Journal of Nanoscience and Nanotechnology, Vol. 9, No. 6, 2009, pp. 3949-3958. doi:10.1166/jnn.2009.NS95
[17] S. Watcharinyanon, C. Virojanadara, J. R. Osiecki, A. A. Zakharov, R. Yakimova, R. I. G. Uhrberg and L. I. Johansson, “Hydrogen Intercalation of Graphene Grown on 6H-SiC(0001),” Surface Science, Vol. 605, No. 17-18, 2011, pp. 1662-1668. doi:10.1016/j.susc.2010.12.018
[18] Y. S. Nechaev, “Solid Hydrogen in Multigraphane Nanostructures,” International Scientific Journal, Vol. 1, No. 1, 2012, pp. 38-60.
[19] Y. S. Nechaev, “On the Solid Hydrogen Intercalation in Multilayer Graphane-Like Nanostructures, Relevance to the Storage Applications,” Journal of Nano Research, Vol. 15, 2011, pp. 75-93. doi:10.4028/www.scientific.net/JNanoR.15.75
[20] Y. S. Nechaev, “On the Solid Hydrogen Carrier Intercalation in Graphane-Like Regions in Carbon-Based Nanostructures,” International Journal of Hydrogen Energy, Vol. 36, No. 15, 2011, pp. 9023-9031. doi:10.1016/j.ijhydene.2011.04.073
[21] Y. S. Nechaev, “The High-Density Hydrogen Carrier Intercalation in Graphane-Like Nanostructures, Relevance to Its On-Board Storage in Fuel-Cell-Powered Vehicles,” The Open Fuel Cell Journal, Vol. 4, 2011, pp. 16-29. doi:10.2174/1875932701104010016
[22] H. Xiang, E. Kan, S.-H. Wei, M.-H. Whangbo and J. Yang, “‘Narrow’ Graphene Nanoribbons Made Easier by Partial Hydrogenation,” Nano Letters, Vol. 9, No. 12, 2009, pp. 4025-4030. doi:10.1021/nl902198u
[23] S. Lebegue, M. Klintenberg, O. Eriksson and M. I. Katsnelson, “Accurate Electronic Band Gap of Pure and Functionalized Graphane from GW Calculations,” Physical Review B-Condensed Matter Material Physics, Vol. 79, No. 24, 2009, Article ID: 245117.
[24] J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe and P. Jena, “Ferromagnetism in Semihydrogenated Graphene Sheet,” Nano Letters, Vol. 9, No. 11, 2009, pp. 3867-3870. doi:10.1021/nl9020733
[25] A. A. Dzhurakhalov and F. M. Peeters, “Structure and Ener-getics of Hydrogen Chemisorbed on a Single Graphene Layer to Produce Graphane,” Carbon, Vol. 49, No. 10, 2011, pp. 3258-3266. doi:10.1016/j.carbon.2011.03.052
[26] P. Ruffieux, O. Groning, M. Bielmann, P. Mauron, L. Schlapbach and P. Groning, “Hydrogen Adsorption on sp2-Bonded Carbon: Influence of the Local Curvature,” Physical Review B, Vol. 66, No. 24, 2002, Article ID: 245416.
[27] X. Sha and B. Jackson, “First-Principles Study of the Structural and Energetic Properties of H Atoms on Graphite (0001) Surface,” Surface Science, Vol. 496, No. 3, 2002, pp. 318-330.
[28] M. H. F. Sluiter and Y. Kawazoe, “Cluster Expansion Method for Adsorption: Application to Hydrogen Chemisorption on Graphene,” Physical Review B, Vol. 68, No. , 2003, Article ID: 085410.
[29] O. V. Yazyev and L. Helm, “Defect-Induced Magnetism in Graphene,” Physical Review B, Vol. 75, No. 12, 2007, Article ID: 125408. doi:10.1103/PhysRevB.75.125408
[30] P. O. Lehtinen, A. S. Foster, Y. Ma, A. V. Krasheninnikov and R. M. Nieminen, “Irradiation-Induced Magnetism in Graphite: A Density Functional Study,” Physical Review Letters, Vol. 93, No. 18, 2004, Article ID: 187202. doi:10.1103/PhysRevLett.93.187202
[31] D. W. Boukhvalov, M. I. Katsnelson and A. I. Lichtenstein, “Hydrogen on Graphene: Total Energy, Structural Distortions and Magnetism from First-Principles Calculations,” Physical Review B, Vol. 77, No. 3, 2008, Article ID: 035427. doi:10.1103/PhysRevB.77.035427
[32] D. Jiang, V. R. Cooper and S. Dai, “Porous Graphene as the Ultimate Membrane for Gas Separation,” Nano Letters, Vol. 9, No. 12, 2009, pp. 4019-4024. doi:10.1021/nl9021946
[33] W. H. Brito, R. Kagimura and R. H. Miwa, “HydrogenAted Grain Boundaries in Graphene,” Applied Physics Letters, Vol. 98, No. 21, 2011, Article ID: 213107. doi:10.1063/1.3592578
[34] L. Tapasztó, P. Nemes-Incze, G. Dobrik, K. Jae-Yoo, C. Hwang and L. P. Biró, “Mapping the Electronic Properties of Individual Graphene Grain Boundaries,” Applied Physics Letters, Vol. 100, No. 5, 2012, Article ID: 053114. doi:10.1063/1.3681375
[35] F. Banhart, J. Kotakoski and A. V. Krasheninnikov, “Structural Defects in Graphene,” ACS Nano, Vol. 5, No. 1, 2011, pp. 26-41. doi:10.1021/nn102598m
[36] O. V. Yazyev and S. G. Louie, “Topological Defects in Graphene: Dislocations And Grain Boundaries,” Physical Review B-Condensed Matter and Materials Physics, Vol. 81, No. 19, 2010, Article ID: 195420. doi:10.1103/PhysRevB.81.195420
[37] K. Kim, Z. Lee, W. Regan, C. Kisielowski, M. F. Crommie and A. Zettl, “Grain Boundary Mapping in Polycrystalline Graphene,” ACS Nano, Vol. 5, No. 3, 2011, pp. 2142-2146. doi:10.1021/nn1033423
[38] J. C. Koepke, J. D. Wood, D. Estrada, Z.-Y. Ong, K. T. He, E. Pop and J. W. Lyding, “Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study,” ACS Nano, Vol. 7, No. 1, 2013, pp. 75-86. doi:10.1021/nn302064p
[39] J. Zhang and J. Zhao, “Structures and Electronic Properties of Symmetric and Nonsymmetric Graphene Grain Boundaries,” Carbon, Vol. 55, 2013, pp. 151-159. doi:10.1016/j.carbon.2012.12.021
[40] B. I. Yakobson and F. Ding, “Observational Geology of Graphene, at the Nanoscale,” ACS Nano, Vol. 5, No. 3, 2011, pp. 1569-1574. doi:10.1021/nn200832y
[41] E. Cockayne, G. M. Rutter, N. P. Guisinger, J. N. Crain, P. N. First and J. A. Stroscio, “Grain Boundary Loops in Graphene,” Physical Review B-Condensed Matter and Materials Physics, Vol. 83, No. 19, 2011, Article ID: 195425.
[42] J. Zhang, J. Zhao and J. Lu, “Intrinsic Strength and Failure Behaviours of Graphene Grain Boundaries,” ACS Nano, Vol. 6, No. 3, 2012, pp. 2704-2711. doi:10.1021/nn3001356
[43] P. Sessi, J. R. Guest, M. Bode and N. P. Guisinger, “Patterning Graphene at the Nanometer Scale via Hydrogen Desorption,” Nano Letters, Vol. 9, No. 12, 2009, pp. 4343-4347. doi:10.1021/nl902605t
[44] I. P. Bazarov, “Thermodynamics,” Vysshaya Shkola, Moscow, 1976.
[45] M. K. Karapet’yants and M. L. Karapet’yants, “Osnovnye Termodinamicheskie Konstanty Neorganicheskikh i Organicheskikh Veshchestv,” (“Fundamental Thermodynamic Constants of Inorganic and Organic Substances”) Khimiya, Moscow, 1968.
[46] A. A. Zhukhovitskii and L. A. Shvartsman, “Physical Chemistry,” Metallurgiya, Moscow, 1987.
[47] L. Xie, X. Wang, J. Lu, Z. Ni, Z. Luo, H. Mao, R. Wang, Y. Wang, H. Huang, D. Qi, R. Liu, T. Yu, Z. Shen, T. Wu, H. Peng, B. Ozyilmaz, K. Loh, A. T. S. Wee, Ariando and W. Chen, “Room Temperature Ferromagnetism in Partially Hydrogenated Epitaxial Graphene,” Applied Physics Letters, Vol. 98, No. 19, 2011, Article ID: 193113. doi:10.1063/1.3589970
[48] C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, Vol. 321, No. 5887, 2008, pp. 385-388. doi:10.1126/science.1157996
[49] A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov and C. Casiraghi, “Probing the Nature of Defects in Graphene by Raman Spectroscopy,” Nano Letters, Vol. 12, No. 8, 2012, pp. 3925-3930. doi:10.1021/nl300901a
[50] F. H. Yang and R. T. Yang, “Ab Initio Molecular Orbital Study of Adsorption of Atomic Hydrogen on Graphite: Insight into Hydrogen Storage in Carbon Nanotubes,” Carbon, Vol. 40, No. 3, 2002, pp. 437-444. doi:10.1016/S0008-6223(01)00199-3
[51] M. Wojtaszek, N. Tombros, A. Garreta, P. H. M. Van Loosdrecht and B. J. Van Wees, “A Road to Hydrogenating Graphene by a Reactive Ion Etching Plasma,” Journal of Applied Physics, Vol. 110, No. 6, 2011, Article ID: 063715. doi:10.1063/1.3638696
[52] A. Castellanos-Gomez, M. Wojtaszek, Arramel, N. Tombros and B. J. Van Wees, “Reversible Hydrogenation and Bandgap Opening of Graphene and Graphite Surfaces Probed by Scanning Tunneling Spectroscopy,” Small, Vol. 8, No. 10, 2012, pp. 1607-1613. doi:10.1002/smll.201101908
[53] A. Castellanos-Gomez, Arramel, M. Wojtaszek, R. H. M. Smit, N. Tombros, N. Agrait, B. J. Van Wees and G. Rubio-Bollinger, “Electronic Inhomogeneities in Graphene: The Role of the Substrate Interaction and Chemical Doping,” Boletin Grupo Espanol Carbón, Vol. 25, No. 9 , 2012, pp. 18-22.
[54] A. Castellanos-Gomez, R. H. M. Smit, N. Agrait and G. Rubio-Bollinger, “Spatially Resolved Electronic Inhomogeneities of Graphene Due to Subsurface Charges,” Carbon, Vol. 50, No. 3, 2012, pp. 932-938. doi:10.1016/j.carbon.2011.09.055
[55] F. C. Bocquet, R. Bisson, J.-M. Themlin, J.-M. Layet and T. Angot, “Reversible Hydrogenation of Deuterium-Intercalated Quasi-Free-Standing Graphene on SiC(0001),” Physical Review B-Condensed Matter and Materials Physics, Vol. 85, No. 20, 2012, Article ID: 201401. doi:10.1103/PhysRevB.85.201401
[56] Z. Luo, T. Yu, K.-J. Kim, Z. Ni, Y. You, S. Lim, Z. Shen, S. Wang and J. Lin, “Thickness-Dependent Reversible Hydrogenation of Graphene Layers,” ACS Nano, Vol. 3, No. 7, 2009, pp. 1781-1788. doi:10.1021/nn900371t
[57] L. Hornekaer, Z. Sljivancanin, W. Xu, R. Otero, E. Rauls, I. Stensgaard, E. LSgsgaard, B. Hammer and F. Besenbacher, “Metastable Structures and Recombination Pathways for Atomic Hydrogen on the Graphite (0001) Surface,” Physical Review Letters, Vol. 96, No. 15, 2006, Article ID: 156104. doi:10.1103/PhysRevLett.96.156104
[58] R. Balog, B. Jorgensen, J. Wells, E. Lagsgaard, P. Hofmann, F. Besenbacher and L. Hornekar, “Atomic HydroGen Adsorbate Structures on Graphene,” Journal of the American Chemical Society, Vol. 131, No. 25, 2009, pp. 8744-8745. doi:10.1021/ja902714h
[59] Z. Waqar, Z. Klusek, E. Denisov, T. Kompaniets, I. Makarenko, A. Titkov and A. Saleem, “Effect of Atomic Hydrogen Sorption and Desorption on Topography and Electronic Properties of Pyrolytic Graphite,” Electrochemical Society Proceedings, Vol. 16, No. 5, 2000, pp. 254-265.
[60] R. F. Trunin, V. D. Urlin and A. B. Medvedev, “Dynamic Compression of Hydrogen Isotopes at Megabar Pressures,” Physics-Uspekhi, Vol. 53, No. 6, 2010, pp. 605-622. doi:10.3367/UFNe.0180.201006d.0605
[61] B. K. Gupta, R. S. Tiwari and O. N. Srivastava, “Studies on Synthesis and Hydrogenation Behavior of Graphitic Nanofibers Prepared through Palladium Catalyst Assisted Thermal Cracking of Acetylene,” Journal of Alloys and Compounds, Vol. 381, No. 1-2, 2004, pp. 301-308. doi:10.1016/j.jallcom.2004.03.094
[62] C. Park, P. E. Anderson, A. Chambers, C. D. Tan, R. Hidalgo and N. M. Rodriguez, “Further Studies of the Interaction of Hydrogen with Graphite Nanofibers,” The Journal of Physical Chemistry B, Vol. 103, No. 48, 1999, pp. 10572-10581. doi:10.1021/jp990500i
[63] Y. Lin, F. Ding and B. I. Yakobson, “Hydrogen Storage by Spillver on Graphene as a Phase Nucleation Process,” Physical Review B-Condensed Matter and Materials Physics, Vol. 78, No. 4, 2008, Article ID: 041402.
[64] A. K. Singh, M. A. Ribas and B. I. Yakobson, “H-Spillover through the Catalist Saturation: An Ab Initio Thermodynamics Study,” ACS Nano, Vol. 3, No. 7, 2009, pp. 1657-1662. doi:10.1021/nn9004044
[65] L. Wang and R. T. Yang, “New Sorbents for Hydrogen Storage by Hydrohen Spillover—A Review,” Energy and Environmental Science, Vol. 1, 2008, pp. 268-279. doi:10.1039/b807957a
[66] L. Wang and R. T. Yang, “Hydrogen Storage on CarbonBased Adsorbents and Storage at Ambient Temperature by Hydrogen Spllover,” Catalysis Reviews: Science and Engineering, Vol. 52, No. 4, 2010, pp. 411-461. doi:10.1080/01614940.2010.520265
[67] Y. Gao, N. Zhao, J. Li, E. Liu, C. He and C. Shi, “Hydrogen Spillover Storage on Ca-Decorated Graphene,” International Journal of Hydrogen Energy, Vol. 37, No. 16, 2012, pp. 11835-11841. doi:10.1016/j.ijhydene.2012.05.029
[68] L. Wang and R. T. Yang, “Molecular Hydrogen and Spiltover Hydrogen Storage on High Surface Area Carbon Sorbents,” Carbon, Vol. 50, No. 9, 2012, pp. 3134-3140. doi:10.1016/j.carbon.2011.09.049
[69] S. S. Han, H. Jung, D. H. Jung, S.-H. Choi and N. Park, “Stability of Hydrogenation States of Graphene and Conditions for Hydrogen Spillover,” Physical Review B-Condensed Matter and Materials Physics, Vol. 85, No. 15, 2012, Article ID: 155408.
[70] A. Zuettel, “Hydrogen—The Future Energy Carrier,” Materials of International Hydrogen Research Showcase 2011,” Birmingham, 13-15 April 2011, pp. 1-38. http://www.uk-shec.org.uk/uk-shec/showcase/ShowcasePresentations.html
[71] D. Fruchart, “Large Scale Development of Metal Hydrides for Stationary and Nomad Hydrogen Storage Units. Which Are Potential Partners to Built Innovative Solutions for Sustainable and Clean Energy Systems?” Materials of International Hydrogen Research Showcase 2011, Birmingham, 13-15 April 2011, pp. 1-38. http://www.uk-shec.org.uk/uk-shec/showcase/ShowcasePresentations.html
[72] E. Akiba, “Hydrogen Related R&D and Hydrogen Storage Materials in Japan,” Materials of International Hydrogen Research Showcase 2011, Birmingham, 13-15 April 2011, pp. 1-50. http://www.uk-shec.org.uk/uk-shec/showcase/ShowcasePresentations.html
[73] J. W. Kim, “Current Status of R&D on Hydrogen Production and Storage in Korea,” Materials of International Hydrogen Research Showcase 2011,” Birmingham, 13-15 April 2011, pp. 1-45. http://www.uk-shec.org.uk/uk-shec/showcase/ShowcasePresentations.html.
[74] S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz, “The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards Meeting Hydrogen-Powered Vehicle Requirements,” Catalysis Today, Vol. 120, No. 3-4, 2007, pp. 246-257. doi:10.1016/j.cattod.2006.09.022
[75] DOE, “Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles,” 2012. wwwl.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/ targets_onboard_hydro_storage.pdf

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.