Rolling Circle Amplification on Biotin-Streptavidin Complexes Immobilized to Activated Cyclic Polyolefin Surfaces


Cyclic polyolefin (COP) is an inexpensive hydrophobic material with low auto-fluorescence, high light transmittance and thermal stability, broad chemical resistance and no non-specific protein binding. Here, the hydrophobic alkane COP was modified to have carbonyl functionalities through oxygen plasma and chemical etching treatments to increase usefulness for chemical and biochemical applications. Then, biotin-hydrazide was used to create biotinylated surfaces that bound streptavidin. A biotinylated target oligonucleotide was subsequently bound to the immobilized biotin-streptavidin and ligation mediated rolling circle amplification-based (L-RCA) SNP detection was demonstrated.

Share and Cite:

H. Oh, A. Cerchiari, D. Sørensen, T. Mon and C. Smith, "Rolling Circle Amplification on Biotin-Streptavidin Complexes Immobilized to Activated Cyclic Polyolefin Surfaces," Materials Sciences and Applications, Vol. 4 No. 9, 2013, pp. 538-548. doi: 10.4236/msa.2013.49066.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. D. Niles and P. J. Coassin, “Cyclic Olefin Polymers: Innovative Materials for High-Density Multiwell Plates,” Assay and Drug Development Technologies, Vol. 6, No. 4, 2008, pp. 577-590. doi:10.1089/adt.2008.134
[2] M. M. Dudek, R. P. Gandhiraman, C. Volcke, A. A. Cafolla, S. Daniels and A. J. Killard, “Plasma Surface Modification of Cyclo-Olefin Polymers and Its Application to Lateral Flow Bioassays,” Langmuir, Vol. 25, No. 18, 2009, pp. 11155-11161. doi:10.1021/la901455g
[3] T. B. Stachowiak, D. A. Mair, T. G. Holden, L. J. Lee, F. Svec and J. M. Frechet, “Hydrophilic Surface Modification of Cyclic Olefin Copolymer Microfluidic Chips Using Sequential Photografting,” Journal of Separation Science, Vol. 30, No. 7, 2007, pp. 1088-1093. doi:10.1002/jssc.200600515
[4] Q. Cao, M. C. Kim and C. Klapperich, “Plastic Microfluidic Chip for Continuous-Flow Polymerase Chain Reaction: Simulations and Experiments,” Biotechnology Journal, Vol. 6, No. 2, 2011, pp. 177-184. doi:10.1002/biot.201000100
[5] Y. Fuchiwaki, H. Nagai, M. Saito and E. Tamiya, “Ultra-Rapid Flow-Through Polymerase Chain Reaction Microfluidics Using Vapor Pressure,” Biosensors and Bioelectronics, Vol. 27, No. 1, 2011, pp. 88-94. doi:10.1016/j.bios.2011.06.022
[6] A. Bhattacharyya and C. M. Klapperich, “Differential Gene Expression Using mRNA Isolated on Plastic Microfluidic Chips,” Conference Proceedings of IEEE Engineering in Medicine and Biology Society, Vol. 2009, 2009, pp. 1067-1070.
[7] M. Mahalanabis, J. Do, H. Almuayad, J. Y. Zhang and C. M. Klapperich, “An Integrated Disposable Device for DNA Extraction and Helicase Dependent Amplification,” Biosensors and Bioelectronics, Vol. 12, 2010, pp. 335-359. doi:10.1007/s10544-009-9391-8
[8] A. Bhattacharyya and C. M. Klapperich, “Thermoplastic Microfluidic Device for On-Chip Purification of Nucleic Acids for Disposable Diagnostics,” Analytical Chemistry, Vol. 78, No. 3, 2006, pp. 788-792. doi:10.1021/ac051449j
[9] J. Raj, G. Herzog, M. Manning, C. Volcke, B. D. MacCraith, S. Ballantyne, M. Thompson and D. W. Arrigan, “Surface Immobilisation of Antibody on Cyclic Olefin Copolymer for Sandwich Immunoassay,” Biosensors and Bioelectronics, Vol. 24, No. 8, 2009, pp. 2654-2658. doi:10.1016/j.bios.2009.01.026
[10] C. Volcke, R. P. Gandhiraman, V. Gubala, J. Raj, T. Cummins, G. Fonder, R. I. Nooney, Z. Mekhalif, G. Herzog, S. Daniels, D. W. Arrigan, A. A. Cafolla and D. E. Williams, “Reactive Amine Surfaces for Biosensor Applications, Prepared by Plasma-Enhanced Chemical Vapour Modification of Polyolefin Materials,” Biosensors and Bioelectronics, Vol. 25, No. 8, 2010, pp. 1875-1880. doi:10.1016/j.bios.2009.12.034
[11] A. Bhattacharyya and C. M. Klapperich, “Design and Testing of a Disposable Microfluidic Chemiluminescent Immunoassay for Disease Biomarkers in Human Serum Samples,” Biosensors and Bioelectronics, Vol. 9, No. 2, 2007, pp. 245-251. doi:10.1007/s10544-006-9026-2
[12] I. Saaem, M. Kuo-Sheng, A. N. Marchi, T. H. LaBean and J. Tian, “In Situ Synthesis of DNA Microarray on Functionalized Cyclic Olefin Copolymer Substrate,” Applied Materials & Interfaces, Vol. 2, No. 2, 2010, pp. 491-497. doi:10.1021/am900884b
[13] S. Laib and B. D. MacCraith, “Immobilization of Biomolecules on Cycloolefin Polymer Supports,” Analytical Chemistry, Vol. 79, No. 16, 2007, pp. 6264-6270. doi:10.1021/ac062420y
[14] K. Kinoshita, K. Fujimoto, T. Yakabe, S. Saito, Y. Hamaguchi, T. Kikuchi, K. Nonaka, S. Murata, D. Masuda, W. Takada, S. Funaoka, S. Arai, H. Nakanishi, K. Yokoyama, K. Fujiwara and K. Matsubara, “Multiple Primer Extension by DNA Polymerase on a Novel Plastic DNA Array Coated with a Biocompatible Polymer,” Nucleic Acids Research, Vol. 35, No. 1, 2007, p. e3. doi:10.1093/nar/gkl939
[15] C. Wittmann and C. Marquette, “DNA Immobilization, Encyclopedia of Analytical Chemistry,” John Wiley & Sons, Inc., New York, 2012.
[16] A. F. Sauer-Budge, P. MIrer, A. Chatterjee, C. M. Klapperich, D. Chargin and A. Sharon, “Low Cost and Manufacturable Complete MicroTAS for Detecting Bacteria,” Lab on a Chip, Vol. 29, No. 19, 2009, pp. 2803-2810. doi:10.1039/b904854e
[17] C. Li, Y. Yang, H. G. Craighead and K. H. Lee, “Isoelectric Focusing in Cyclic Olefin Copolymer Microfluidic Channels Coated by Polyacrylamide Using a UV Photografting Method,” Electrophoresis, Vol. 26, No. 9, 2005, pp. 1800-1806. doi:10.1002/elps.200410309
[18] C. L. Smith, J. S. Milea and G. H. Nguyen, “Immobilization of Nucleic Acids using Biotin-Strept (Avidin) Systems,” Immobilisation of DNA on Chips II: Topics in Current Chemistry, Vol. 261, 2006, pp. 63-90.
[19] F. Wang, V. M. Weaver, O. W. Petersen, C. A. Larabell, S. Dedhar, P. Briand, R. Lupu and M. J. Bissell, “Reciprocal Interactions between Beta1-Integrin and Epidermal Growth Factor Receptor in Three-Dimensional Basement Membrane Breast Cultures: A Different Perspective in Epithelial Biology,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, No. 25, 1998, pp. 14821-14826. doi:10.1073/pnas.95.25.14821
[20] C. R. Sabanayagam, C. Berkey, U. Lavi, C. R. Cantor and C. L. Smith, “Molecular Switches and DNA Chips,” SPIE, Vol. 3606, 1999, pp. 90-97. doi:10.1117/12.350049
[21] C. R. Cantor and C. L. Smith, “Genomics: The Science and Technology Behind the Human Genome Project,” John Wiley & Sons, Inc., New York, 1999.
[22] P. S. Dittrich and A. Manz, “Lab-on-a-Chip: Microfluidics in Drug Discovery,” Nature Reviews Drug Discovery, Vol. 5, No. 3, 2006, pp. 210-218. doi:10.1038/nrd1985
[23] P. Watts, C. Wiles, S. J. Haswell, E. Pombo-Villar and P. Styring, “The Synthesis of Peptides Using Micro Reactors,” Chemical Communication, No. 11, 2001, pp. 990-991.
[24] M. G. Alonso-Amigo and T. Adams, “Development of a Plastic Microfluidics Chip,” IVD Technology, Vol. 9, No. 2, 2003, pp. 41-46.
[25] M. Medina-Sanchez, S. Miserere and A. Merkoci, “Nanomaterials and Lab-on-a-Chip Technologies,” Lab on a Chip, Vol. 12, No. 11, 2012, pp. 1932-1943. doi:10.1039/c2lc40063d
[26] Y. Wen, X. Zhang and S. T. Yang, “Medium to High Throughput Screening: Microfabrication and Chip-Based Technology,” Advances in Experimental Medicine and Biology, Vol. 745, 2012, pp. 181-209. doi:10.1007/978-1-4614-3055-1_11
[27] T. Rohr, C. Yu, M. H. Davey, F. Svec and J. M. Frechet, “Porous Polymer Monoliths: Simple and Efficient Mixers Prepared by Direct Polymerization in the Channels of Microfluidic Chips,” Electrophoresis, Vol. 22, No. 18, 2001, pp. 3959-3967. doi:10.1002/1522-2683(200110)22:18<3959::AID-ELPS3959>3.0.CO;2-5

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.