Physical Properties of CrSb/InP(001): Effect of Interface in Half-Metallic


In this study, density functional theory in improved flat waves’ framework has been used. First of all, characterization, elastic and half-metallic properties of the CrSb-ZB compound at (GGA & LDA) and GGA + U approximation are calculated. The elastic calculations indicate that the CrSb-ZB is a ductile material. However, the calculation of Deby temperature indicates that the CrSb-ZB is meta-stable. The half-metallicity character is also preserved at CrSb/InP (001) interface by GGA + U. The conduction band minimum (CBM) of CrSb in the minority spin case lies about 1.26 eV above that of GaSb, suggesting that the major spin can be injected into GaSb without being flipped to the conduction bands of the minor spin.

Share and Cite:

A. Boochani, S. Solymani, S. Rezaee, N. Nezafat, S. Tadayon and A. Aminian, "Physical Properties of CrSb/InP(001): Effect of Interface in Half-Metallic," World Journal of Nano Science and Engineering, Vol. 3 No. 3, 2013, pp. 79-86. doi: 10.4236/wjnse.2013.33011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. M. D. Coey and M. Venkatesan, “Lecture Note in Physics,” Springer, New York, 2002.
[2] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip and B. J. van Wees, “Fundamental Obstacle for Electrical Spin Injection from a Ferromagnetic Metal into a Diffusive Semiconductor,” Physical Review B, Vol. 62, No. 8, 2000, pp. R4790-R4793. doi:10.1103/PhysRevB.62.R4790
[3] S. Picozzi, A. Continenza and A. J. Freeman, “Role of Structural Defects on the Half-Metallic Character of Co2MnGe and Co2MnSi Heusler Alloys,” Physical Review B, Vol. 69, No. 9, 2004, Article ID: 094423. doi:10.1103/PhysRevB.69.094423
[4] L. J. Singh, Z. H. Barber, Y. Miyoshi, W. R. Branford and L. F. Cohen, “Structural and Transport Studies of Stoichiometric and Off-Stoichiometric Thin Films of the Full Heusler Alloy Co2MnSi,” Journal of Applied Physics, Vol. 95, No. 11, 2004, p. 7231. doi:10.1063/1.1667857
[5] T. Plake, M. Ramsteiner, V. M. Kaganer, B. Jenichen, M. Kastner, L. Daweritz and K. H. Ploog, “Periodic Elastic Domains of Coexisting Phases in Epitaxial MnAs Films on GaAs,” Applied Physics Letters, Vol. 80, No. 14, 2002, p. 2523. doi:10.1063/1.1467699
[6] K. Ono, J. Okabayashi, M. Mizuguchi, M. Oshima, A. Fujimori and H. Akinaga, “Fabrication, Magnetic Properties, and Electronic Structures of Nanoscale Zinc-Blende MnAs Dots (Invited),” Journal of Applied Physics, Vol. 91, No. 10, 2002, p. 8088.
[7] H. Akinaga, T. Manago and M. Sirai, “Material Design of Half-Metallic Zinc-Blende CrAs and the Synthesis by Molecular-Beam Epitaxy,” Japanese Journal of Applied Physics, Vol. 39, 2000, pp. L1118-L1120. doi:10.1143/JJAP.39.L1118
[8] M. Mizuguchi, H. Akinaga, T. Manago, K. Ono, M. Oshima, M. Shirai, M. Yuri, H. J. Lin, H. H. Hsieh and C. T. Chen, “Epitaxial Growth of Zinc-Blende CrAs/GaAs Multilayer,” Journal of Applied Physics, Vol. 91, No. 10, 2002, p. 7917. doi:10.1063/1.1455612
[9] J. H. Zhao, F. Matsukura, K. Takamura, E. Abe, D. Chiba and H. Ohno, “Room-Temperature Ferromagnetism in Zincblende CrSb Grown by Molecular-Beam Epitaxy,” Applied Physics Letters, Vol. 79, No. 17, 2001, p. 2776. doi:10.1063/1.1413732
[10] P. Radhakrishna and J. W. Cable, “Inelastic-Neutron-Scattering Studies of Spin-Wave Excitations in the Pnictides MnSb and CrSb,” Physical Review B, Vol. 54, No. 17, 1996, p. 11940. doi:10.1103/PhysRevB.54.11940
[11] B.-G. Liu, “Robust Half-Metallic Ferromagnetism in Zinc-Blende CrSb,” Physical Review B, Vol. 67, No. 17, 2003, Article ID: 172411. doi:10.1103/PhysRevB.67.172411
[12] L. Bornstein, “Numerical Data and Functional Relationships in Science and Technology,” Springer, Berlin, 1987.
[13] J. Perdew, K. Burke and M. Enzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, No. 18, 1996, pp. 3865-3868. doi:10.1103/PhysRevLett.77.3865
[14] P. Blaha, K. Schwarz, P. Sorantin and S. B. Trickey, “Full-Potential, Linearized Augmented Plane Wave Programs for Crystalline Systems,” Computer Physics Communications, Vol. 59, No. 2, 1990, pp. 399-415. doi:10.1016/0010-4655(90)90187-6
[15] H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Physical Review B, Vol. 13, No. 12, 1976, pp. 5188-5192. doi:10.1103/PhysRevB.13.5188
[16] M. Shirai, “Possible Half-Metallic Ferromagnetism in Zinc Blende CrSb and CrAs (Invited),” Journal of Applied Physics, Vol. 93, No. 10, 2003. p. 6844. doi:10.1063/1.1558604
[17] A. Mellouki, L. Kalarasse, B. Bennecer and F. Kalarasse, “First Principles Calculations of the Structural and Elastic Properties of the Filled Tetrahedral Compounds LiCdX (X = N, P, As),” Computational Materials Science, Vol. 42, No. 4, 2008, pp. 579-583.
[18] M. J. Mehl, B. M. Klein and D. A. Papaconstantopoulos, “Intermetalic Compounds: Principles and Practice,” In: J. H. Westbrook and R. L. Fleisher, Eds., Principles, John Wiley and sons, London, 1995, pp. 195-210.
[19] P. Ravindran, L. Fast, P. A. Korzavyi, B. Johansson, J. Will and O. Eriksoon, “Density Functional Theory for Calculation of Elastic Properties of Orthorhombic Crystals: Application to TiSi2,” Journal of Applied Physics, Vol. 84, No. 9, 1998, p. 4891. doi:10.1063/1.368733
[20] J. D. Walecka, “Fundamental of Statistical Mechanics: Manuscript and Notes of Felix Bloch,” Imperial Vollege Press and Word Scientific, Singapore, 2000. doi:10.1142/4522
[21] T. Bandyopadhyay and D. D. Sarma, “Calculation of Coulomb Interaction Strengths for 3d Transition Metals and Actinides,” Physical Review B, Vol. 39, No. 6, 1989, pp. 3517-3521. doi:10.1103/PhysRevB.39.3517
[22] M. Peressi, N. Binggeli and A. Baldereschi, “Band Engineering at Interfaces: Theory and Numerical Experiments,” Journal of Physics D: Applied Physics, Vol. 31, No. 11, 1998, p. 1273. doi:10.1088/0022-3727/31/11/002
[23] F. Ahmadian, M. R. Abolhassani, M. Ghoranneviss and M. Elahi, “Half-Metallicity Characteristic at Zincblende CrSb(0 0 1) Surfaces and Its Interfaces with GaSb(0 0 1) and InAs(0 0 1),” Physica B, Vol. 31, 2009, p. 5212.
[24] A. Boochani, M. R. Abolhasani, M. Ghoranneviss and M. Elahi, “First Principles Study of Half Metallic Properties of VSb Surface and VSb/GaSb (001) Interface,” Communications in Theoretical Physics, Vol. 54, No. 1, 2010, pp. 148-158. doi:10.1088/0253-6102/54/1/28
[25] E. Sartipi, A. Hojabri, A. Bouchani and M. H. Shakib, “First Principles Study of Half-metallic Properties at MnSb/ GaSb(001) Interface,” Chinese Journal of Chemical Physics, Vol. 24, No. 2, 2011, p. 155.
[26] E. Hazrati, S. J. Hashemifar, H. Akbarzadeh, “First Principles Study of Bulk CrSe and CrSe/ZnSe(001) Interface,” Journal of Applied Physics, Vol. 104, No. 11, 2008, Article ID: 113719. doi:10.1063/1.3039510
[27] R. Q. Wu, G. W. Peng and Y. P. Feng, “Properties of VAs/GaAs Interface from First Principles Study,” Journal of Physics: Conference Series, Vol. 29, No. 1, 2006, p. 150. doi:10.1088/1742-6596/29/1/028
[28] N. Ghaderi, S. Hashemifar, H. Akbarzadeh and M. Peressi, “First Principle Study of Co2MnSi/GaAs(001) Heterostructures,” Journal of Applied Physics, Vol. 102, No. 7, 2007, Article ID: 074306. doi:10.1063/1.2781529
[29] S. Zarei, S. J. Hashemifar, H. Akbarzadeh and Z. Haffari, “Half-metallicity at the Heusler alloy Co2Cr0.5Fe0.5Al(001) surface and its interface with GaAs(001),” Journal of Physics: Condensed Matter, Vol. 21, No. 5, 2009, Article ID: 055002. doi:10.1088/0953-8984/21/5/055002
[30] Sh. Khosravizadeh, S. Javad Hashemifar and H. Akbarzadeh, “First-Principles Study of the Co2FeSi(001) Surface and Co2FeSi/GaAs(001) Interface,” Physical Review B, Vol. 79, No. 23, 2009, Article ID: 235203. doi:10.1103/PhysRevB.79.235203

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.