Controlled Local Hyperthermia and Magnetic Hyperthermia of Surface (Skin) Cancer Diseases


Average size of hematite and magnetite micro and nanopowders and polydispersity index, zeta potential and distribution of particles were studied. Analysis showed that average size of the obtained particles for magnetite is 740.9 nm, for hematite particles 30 - 35 nm. Alternate current feed source was created for hyperthermia. Proceeding from the requirements of the objectives, the U type MnZn material magneto conductors were selected, in which 10.0 and 8.0 mm width gaps were cut and glass test tubes with magnetite or hematite suspensions were placed in them. Series of experiments at various field intensity and frequencies showed that for efficient magnetic hyperthermia therapy more powerful device was needed with frequency of up to 10 Mega Hertz to achieve the temperature 43°C - 45°C necessary for full activation of Neel and Brown mechanisms in particles. At the next stage, on the basis of experimental material the anticancer mono-therapeutic effect of hyperthermia and its adjuvant action in poly chemotherapeutic treatment was presented by the use of a device created by us “Lezi”. As a result of the experiment it was shown that in all animals (outbred albino mice, 3 months old) inhibition of cancer growth was fixed and intratumoral necrosis was developed, while after 7 and 10 sessions tumors were ulcerated, which refers to positive effect of the experiment (Conclusion of Pathologicanatomical Laboratory “PATGEO”, Tbilisi, Georgia ).

Share and Cite:

Z. Kovziridze, P. Khorava and N. Mitskevich, "Controlled Local Hyperthermia and Magnetic Hyperthermia of Surface (Skin) Cancer Diseases," Journal of Cancer Therapy, Vol. 4 No. 7, 2013, pp. 1262-1271. doi: 10.4236/jct.2013.47149.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Cavaliere, E. C. Ciocatto, B. C. Giovanella, C. Heidelberger, R. O. Johnson, M. Margottini, B. Mondovi, G. Moricca and A. Rossi-Fanelli, “Selective Heat Sensitivity of Cancer Cells. Biochemical and Clinical Studies,” Cancer, Vol. 20, No. 9, 1967, pp. 1351-1381. doi:10.1002/1097-0142(196709)20:9<1351::AID-CNCR2820200902>3.0.CO;2-#
[2] K. Overgaard and J. Overgaard, “Investigation on the Possibility of a Thermic Tumour Therapy. II. Action of Combined Heat-Roentgen Treatment on a Transplanted Mouse Mammary Carcinoma,” European Journal of Cancer, Vol. 8, 1972, pp. 573-575. doi:10.1016/0014-2964(72)90111-9
[3] J. Overgaard, “Effect of Hyperthermia on Malignant Cells in Vivo. A Review and a Hypothesis,” Cancer, Vol. 39, 1977, pp. 2637-2646. doi:10.1002/1097-0142(197706)39:6<2637::AID-CNCR 2820390650>3.0.CO;2-S
[4] M. J. Hyatt and D. E. Day, “Glass Properties of Yttria-Alumina-Silica System,” Journal of the American Ceramic Society, Vol. 70, No. 10, 1987, pp. 283-287. doi:10.1111/j.1151-2916.1987.tb04901.x
[5] E. M. Erbe and D. E. Day, “Chemical Durability of Y2O3-Al2O3-SiO2 Glasses for the in Vivo Delivery of Beta Radiation,” Journal of Biomedical Materials Research, Vol. 27, No. 10, 1993, pp. 1301-1308. doi:10.1002/jbm.820271010
[6] D. E. Day and T. E. Day, “Radiotherapy Glasses,” In: L. L. Hench and J. Wilson, Eds., An Introduction to Bioceramics, World Science, Singapore, 1993, pp. 305-317. doi:10.1142/9789814317351_0017
[7] G. J. Ehrhardt and D. E. Day, “Therapeutic Use of 90Y Microspheres,” Journal of Nuclear Medicine, Vol. 14, 1987, pp. 233-242.
[8] R. V. Mantravadi, D. G. Spigos, W. S. Tan and E. L. Felix, “Intraarterial Yttrium 90 in the Treatment of Hepatic Malignancy,” Radiology, Vol. 142, No. 3, 1982, pp. 783-786.
[9] M. J. Herba, F. F. Illescas, M. P. Thirlwell, G. J. Boos, L. Rosenthall, M. Atri and P. M. Bret, “Hepatic Malignancies: Improved Treatment with Intraarterial Y-90,” Radiology, Vol. 169, No. 2, 1988, pp. 311-314.
[10] I. Wollner, C. Knutsen, P. Smith, D. Prieskorn, C. Chrisp, J. Andrews, J. Juni, S. Warber, J. Klevering, J. Crudup and W. Ensminger, “Effects of Hepatic Arterial Yttrium 90 Glass Microspheres in Dogs,” Cancer, Vol. 61, No. 7, 1988, pp. 1336-1344. doi:10.1002/1097-0142(19880401)61:7<1336::AID-CNCR2820610711>3.0.CO;2-K
[11] S. Houle, T. K. Yip, F. A. Shepherd, L. E. Rotstein, K. W. Sniderman, E. Theis, R. H. Cawthorn and K. Richmond-Cox, “Hepatocellular Carcinoma: Pilot Trial of Treatment with Y-90 Microspheres,” Radiology, Vol. 172, No. 3, 1989, pp. 857-860.
[12] J. H. Anderson, J. A. Goldberg, R. G. Bessent, D. J. Kerr, J. H. McKillop, I. Stewart, T. G. Cooke and C. S. Mc-Ardle, “Glass Yttrium-90 Microspheres for Patients with Colorectal Liver Metastases,” Radiology and Oncology, Vol. 25, No. 2, 1992, pp. 137-139. doi:10.1016/0167-8140(92)90020-U
[13] M. A. Burton, B. N. Gray, C. Jones and A. Coletti, “Intraoperative Dosimetry of 90Y in Liver Tissue,” Journal of Nuclear Medicine, Vol. 16, 1989, pp. 495-498.
[14] F. A. Shepherd, L. E. Rotstein, S. Houle, T. C. Yip, K. Paul and K. W. Sniderman, “A Phase I Dose Escalation Trial of Yttrium-90 Microspheres in the Treatment of Primary Hepatocellular Carcinoma,” Cancer, Vol. 70, No. 9, 1992, pp. 2250-2254. doi:10.1002/1097-0142(19921101)70:9<2250::AID-CNCR2820700906>3.0.CO;2-4
[15] Z. P. Yan, G. Lin, H. Y. Zhao and Y. H. Dong, “An Experimental Study and Clinical Pilot Trials on Yttrium-90 Glass Microspheres through the Hepatic Artery for Treatment of Primary Liver Cancer,” Cancer, Vol. 72, No. 11, 1993, pp. 3210-3215. doi:10.1002/1097-0142(19931201)72:11<3210::AID-CNCR2820721113>3.0.CO;2-6
[16] Z. P. Yan, G. Lin, H. Y. Zhao and Y. H. Dong, “Yttrium-90 Glass Microspheres Injected via the Portal Vein,” Acta Radiologica, Vol. 34, No. 4, 1993, pp. 395-398.
[17] J. C. Andrews, S. C. Walker, R. J. Ackermann, L. A. Cotton, W. D. Ensminger and B. Shapiro, “Hepatic Radioembolization with Yttrium-90 Containing Glass Microspheres: Preliminary Results and Clinical Follow-Up,” Journal of Nuclear Medicine, Vol. 35, No. 10, 1994, pp. 1637-1644.
[18] J. H. Tian, B. X. Xu, J. M. Zhang, B. W. Dong, P. Liang and X. D. Wang, “Ultrasound-Guided Internal Radiotherapy Using Yttrium-90-Glass Microspheres for Liver Malignancies,” Journal of Nuclear Medicine, Vol. 37, No. 6, 1996, pp. 958-963.
[19] X. Cao, N. He, J. Sun, J. Tan, C. Zhang, J. Yang, T. Lu and J. Li, “Hepatic Radioembolization with Yttrium-90 Glass Microspheres for Treatment of Primary Liver Cancer,” Chinese Medical Journal, Vol. 112, 1999, pp. 430-432.
[20] S. D. Chen, J. F. Hsieh, S. C. Tsai, W. Y. Lin, K. Y. Cheng and S. J. Wang, “Intra-Tumoural Injection of 90Y Microspheres into an Animal Model of Hepatoma,” Nuclear Medicine Communications, Vol. 22, No. 2, 2001, pp. 121-125. doi:10.1097/00006231-200102000-00002
[21] M. Kawashita, F. Miyaji, T. Kokubo, G. H. Takaoka, I. Yamada, Y. Suzuki and K. Kajiyama, “Phosphorus-Implanted Glass for Radiotherapy: Effect of Implantation Energy,” Journal of the American Ceramic Society, Vol. 82, No. 3, 1999, pp. 683-688. doi:10.1111/j.1151-2916.1999.tb01817.x
[22] M. Kawashita, R. Shineha, H.-M. Kim, T. Kokubo, Y. Inoue, N. Araki, Y. Nagata, M. Hiraoka and Y. Sawada, “Preparation of Ceramic Microspheres for in Situ Radiotherapy of Deep-Seated Cancer,” Biomaterials, Vol. 24, 2003, pp. 2955-2963. doi:10.1016/S0142-9612(03)00094-2
[23] M. Hiraoka and G. M. Hahn, “Comparison between Tumor pH and Cell Sensitivity to Heat in RIF-1 Tumors,” Cancer Research, Vol. 49, No. 14, 1989, pp. 3734-3736.
[24] N. Araki, Y. Nagata, M. Hiraoka, M. Kawashita, T. Kokubo, Y. Inoue and Y. Sawada, “Treatment of VX2 Tumors in Rabbit Liver by Radioactive Y2O3 Microspheres,” In: Transactions of the 7th World Biomaterials Congress, Australian Society for Biomaterials Inc., Sydney, 2004.
[25] N. F. Borrelli, A. A. Luderer, J. N. Panzarino and H. L. Rittler, “Magnetic Glass-Ceramics for Tumor-Therapy by Hyperthermia,” American Ceramic Society Bulletin, Vol. 61, 1982, pp. 819-819.
[26] A. A. Luderer, N. F. Borrelli, J. N. Panzarino, G. R. Mansfield, D. M. Hess, J. L. Brown, E. H. Barnett and E. W. Hahn, “Glass-Ceramic-Mediated, Magnetic-Field-Induced Localized Hyperthermia—Response of a Murine Mammary-Carcinoma,” Radiation Research, Vol. 94, 1983, pp. 190-198. doi:10.2307/ 3575874
[27] N. F. Borrelli, A. A. Luderer and J. N. Panzarino, “Hysteresis Heating for the Treatment of Tumors,” Physics in Medicine and Biology, Vol. 29, No. 5, 1984, pp. 487-494. doi:10.1088/0031-9155/29/5/001
[28] Y. Ebisawa, T. Kokubo, K. Ohura and T. Yamamuro, “Bioactivity of CaO-SiO2-Based Glasses—In Vitro Evaluation,” Journal of Materials Science: Materials in Medicine, Vol. 1, No. 4, 1990, pp. 239-244. doi:10.1007/BF00701083
[29] Y. Ebisawa, Y. Sugimoto, T. Hayashi, T. Kokubo, K. Ohura and T. Yamamuro, “Crystallization of, (FeO,Fe2O3)-CaO-SiO2 Glasses and Magnetic 182 Properties of Their Crystallized Products,” Journal of the Ceramic Society of Japan, Vol. 99, 1991, pp. 7-13. doi:10.2109/jcersj.99.7
[30] K. Ohura, M. Ikenaga, T. Nakamura, T. Yamamuro, Y. Ebisawa, T. Kokubo, Y. Kotoura and M. Oka, “A Heat-Generating Bioactive Glass-Ceramic for Hyperthermia,” Journal of Applied Biomaterials, Vol. 2, No. 3, 1991, pp. 153-159. doi:10.1002/jab.770020303
[31] T. Kokubo, Y. Ebisawa, Y. Sugimoto, M. Kiyama, K. Ohura, T. Yamamuro, M. Hiraoka and M. Abe, “Preparation of Bioactive and Ferrimagnetic Glass-Ceramic for Hyperthermia,” Bioceramics, Vol. 3, 1992, pp. 213-223.
[32] Y. Ebisawa, T. Kokubo, K. Ohura and T. Yamamuro, “Bioactivity of Fe2O3-Containing CaO-SiO2 Glasses— In-Vitro Evaluation,” Journal of Materials Science: Materials in Medicine, Vol. 4, No. 3, 1993, pp. 225-232. doi:10.1007/BF00122273
[33] M. Ikenaga, K. Ohura, T. Yamamuro, Y. Kotoura, M. Oka and T. J. Kokubo, Journal of Orthopaedic Research, Vol. 11, 1993, p. 849.
[34] Y. Ebisawa, F. Miyaji, T. Kokubo, K. Ohura and T. Nakamura, “Surface Reaction of Bioactive and Ferrimagnetic Glass-Ceramics in the System FeO-Fe2O3-CaO-SiO2,” Journal of the Ceramic Society of Japan, Vol. 105, 1997, pp. 947-951. doi:10.2109/jcersj.105.947
[35] Y. Ebisaw, F. Miyaji, T. Kokubo, K. Ohura and T. Nakamura, “Bioactivity of Ferrimagnetic Glass-Ceramics in the System FeO-Fe2O3-CaO-SiO2,” Biomaterials, Vol. 18, 1997, pp. 1277-1284. doi:10.1016/S0142-9612(97)00067-7
[36] H. Konaka, F. Miyaji and T. Kokubo, “Preparation and Magnetic Properties of Glass-Ceramics Containing a-Fe for Hyperthermia,” Journal of the Ceramic Society of Japan, Vol. 105, 1997, pp. 833-836. doi:10.2109/jcersj.105.833
[37] M. Kawashita, H. Takaoka, T. Kokubo, T. Yao, S. Hamada and T. Shinjo, “Preparation of Magnetite-Containing Glass-Ceramics in Controlled Atmosphere for Hyperthermia of Cancer,” Journal of the Ceramic Society of Japan, Vol. 109, No. 1, 2001, pp. 39-44. doi:10.2109/jcersj.109.39
[38] M. Kawashita, Y. Iwahashi, T. Kokubo, T. Yao, S. Hamada and T. Shinjo, “Preparation of Glass-Ceramics Containing Ferrimagnetic Zinc-Iron Ferrite for the Hyperthermal Treatment of Cancer,” Journal of the Ceramic Society of Japan, Vol. 112, No. 1307, 2004, pp. 373-379. doi:10.2109/ jcersj.112.373
[39] M. Kawashita, “Ceramic Microspheres for Biomedical Applications,” International Journal of Applied Ceramic Technology, Vol. 2, No. 3, 2005, pp. 173-183. doi:10.1111/j.1744-7402.2005.02023.x
[40] Z. Kovziridze, G. Donadze, G. Mamniashvili, A. Akhalkatsi, D. Daraselia, D. Japharidze, O. Romelashvili, A. Shengelaia, C. Gavasheli and J. G. Heinrich, “The Receiving and Study of Hematite Nanoparticles for Hyperthermia,” 1st International Conference for Students and Young Scientists on Materials Processing Science, Tbilisi, 10-13 October 2010, pp. 37-46.
[41] Z. Kovziridze, J. Heinrich, R. Goerke, G. Mamniashvili, Z. Chachkhiani, N. Mitskevich and G. Donadze, “Production of Superparamagnetic Nanospheres for Hyperthermic Therapy of Surface (Skin) Cancer Diseases,” 3rd International Congress on Ceramics, Osaka, 14-18 November 2010.
[42] Z. Kovziridze, J. Heinrich, R. Goerke, G. Mamniashvili, A. Akhalkatsi, Z. Chachkhiani, N. Mitskevich and G. Donadze, “production of Bionanoceramic Superparamagnetics for Creation of Controlled. Local Hyperthermia and Their Use, as Therapeutic Agents, for Purposeful Transportation in Living Organisms in Surface (Skin) Cancer Treatment,” Journal of Georgian Ceramists Association “Ceramics”, Vol. 1, No. 22, 2010, pp. 43-51.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.