Effect of Synthesis Routes on Microstructure of Nanocrystalline Cerium Oxide Powder

Abstract

The effect of different processing routes on the microstructure of nanocrystalline ceria powder has been investigated. The nanocrystalline ceria is produced by solid state high energy ball milling (HEBM) and liquid state solution combustion synthesis (SCS) method. The liquid state route consists of a high temperature combustion reaction to form ceria from an aqueous solution of cerium ammonium nitrate (CAN) as an oxidizer and citric acid (CA) plus glycine (G) as mixed fuels. The powders have been characterized using techniques of X-ray diffraction (XRD), particle size analysis, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The microstructural characterizations show that the particle size distribution of the ball milled ceria powder is much wider than that of ceria produced by the SCS. The scanning electron micrographs show that the ball milled ceria powders are compact and dense structure while SCS ceria powders are scattered and porous.

Share and Cite:

A. Sharma, "Effect of Synthesis Routes on Microstructure of Nanocrystalline Cerium Oxide Powder," Materials Sciences and Applications, Vol. 4 No. 9, 2013, pp. 504-508. doi: 10.4236/msa.2013.49061.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H.-L. Chen, M.-H. Weng, S.-P. Ju, J.-G. Chang, H.-T. Chen and C.-S. Chang, “Structural and Electronic Properties of CenO2n (n = 1 - 5) Nanoparticles: A Computational Study,” Journal of Molecular Structure, Vol. 963, No. 1, 2010, pp. 2-8. HUdoi:10.1016/j.molstruc.2009.09.019U
[2] P. Knauth and H. L. Tuller, “Solute Segregation, Electrical Properties and Defect Thermodynamics of Nanocrystalline TiO2 and CeO2,” Solid State Ionics, Vol. 136-137, 2000, pp. 1215-1224. HUdoi:10.1016/S0167-2738(00)00588-9U
[3] Y. L. Xuan, J. Hu, K. L. Xu, X. D. Hou and Y. Lv, “Development of Sensitive Carbon Disulfide Sensor by Using Its Cataluminescence on Nanosized-CeO2,” Sensors and Actuators B, Vol. 136, 2009, pp. 218-223. HUdoi:10.1016/j.snb.2008.10.014U
[4] G. I. N. Waterhouse and M. R. Waterland, “Opal and Inverse Opal Photonic Crystals: Fabrication and Characterization,” Polyhedron, Vol. 26, 2007, pp. 356-368. HUdoi:10.1016/j.poly.2006.06.024U
[5] Alan V. Chadwick and Shelley L.P. Savin, “EXAFS Study of Nanocrystalline CeO2 Samples Prepared by Sol-Gel and Ball-Milling Routes,” Journal of Alloys and Compounds, Vol. 488, 2009, pp. 1-4. HUdoi:10.1016/j.jallcom.2006.10.164U
[6] H. S. Kang, Y. C. Kang, H. Y. Koo, S. H. Ju, D. Y. Kim, S. K. Hong, J. R. Sohn, K. Y. Jung and S. B. Park, “NanoSized Ceria Particles Prepared by Spray Pyrolysis Using Polymeric Precursor Solution,” Materials Science and Engineering B, Vol. 127, No. 2-3, 2006, pp. 99-104. HUdoi:10.1016/j.mseb.2005.09.063U
[7] A. Q. Wang, P. Punchaipetch, R. M. Wallace and T. D. Golden, “X-Ray Photoelectron Spectroscopy Study of Electrodeposited Nanostructured CeO2 Films,” Journal of Vaccum Science Technology B, Vol. 21, No. 3, 2003, p. 1169. HUdoi:10.1116/1.1577569UH
[8] S. Kanakaraju, S. Mohan and A. K. Sood, “Optical and Structural Properties of Reactive Ion Beam Sputter Deposited CeO2 Films,” Thin solid films, Vol. 305, No. 1-2, 1997, pp. 191-195. HUdoi:10.1016/S0040-6090(97)00081-3U
[9] Y. Konishi, S. Asai, T. Murai and H. Takemori, “Preparation of Fine Ceria Powders by Cerium(IV) Carboxylate Solutions,” Metallurgical and Materials Transactions B, Vol. 28, 1997, pp. 959-961.
[10] John J. Moore and H. J. Feng, “Combustion Synthesis of Advanced Materials: Part I. Reaction Parameters,” Progress in Materials Science, Vol. 39, 1995, pp. 243-273. HUdoi:10.1016/0079-6425(94)00011-5U
[11] R. D. Purohit, B. P. Sharma, K. T. Pillai and A. K. Tyagi, “Ultrafine Ceria Powders via Glycine-Nitrate Combustion,” Materials Research Bulletin, Vol. 36, No. 15, 2001, pp. 2711-2721. HUdoi:10.1016/S0025-5408(01)00762-0U
[12] R. Hamzaoui, O. Elkedim and E. Gaffet, “Milling Conditions Effect on Structure and Magnetic Properties of Mechanically Alloyed Fe-10% Ni and Fe-20% Ni Alloys,” Materials Science and Engineering A, Vol. 381, No. 1-2, 2004, pp. 363-371. HUdoi:10.1016/j.msea.2004.05.008U
[13] K. C. Patil, S. T. Aruna and T. Mimani, “Combustion Synthesis: An Update,” Current Opinion in Solid State and Materials Science, Vol. 6, No. 6, 2002, pp. 507-512. HUdoi:10.1016/S1359-0286(02)00123-7U
[14] C. Suryanarayana, “Mechanical Alloying and Milling,” Marcell Dekker, New York, 2004. HUdoi:10.1201/9780203020647U
[15] H. J. Fecht, Nanophasematerials-Syntheses, Properties and Applications: Proceedings of the NATO Advanced Study Institute on, Kluwer Academic Publishers, 1994, p. 125
[16] S. T. Mukherjee, V. Bedekar, A. Patra, P. U. Sastry and A. K. Tyagi, “Study of Agglomeration Behavior of Combustion-Synthesized Nano-Crystalline Ceria Using New Fuels,” Journal of Alloy and Compounds, Vol. 466, No. 1-2, 2008, pp. 493-497. HUdoi:10.1016/j.jallcom.2007.11.070U
[17] R. P. S. Chakradhar, B. M. Nagabhushana, G. T. Chandrappa, K. P. Ramesh and J. L. Rao, “Solution Combustion Synthesis Derived Nanocrystalline Macroporous Wollastonite Ceramics—Review,” Materials Chemistry and Physics, Vol. 95, No. 1, 2006, pp. 169-175. HUdoi:10.1016/j.matchemphys.2005.06.002U

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.