Electrochemical Self-Assembly of Nanoporous Alumina Templates Title


Porous alumina was fabricated electrochemically through anodic oxidation of aluminum by means of such a self-organized method. Anodic aluminium oxide (AAO) template with nanopores was grown by two-steps anodization processes from a high purity aluminium foil. The anodization process was carried out in a phosphoric acid electrolyte at ambient temperature with a different duration of anodization. The analysis observation by Atomic Force Microscopy (AFM) showed that nanopore size increased with anodization time. The nanopore sizes of porous alumina were (16.04, 26.19 and 37.39 nm) for (1, 2 and 3 hour) respectively.

Share and Cite:

M. Abbas, "Electrochemical Self-Assembly of Nanoporous Alumina Templates Title," Advances in Materials Physics and Chemistry, Vol. 3 No. 5, 2013, pp. 244-248. doi: 10.4236/ampc.2013.35035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Shingubara, “Fabrication of Nanomaterials Using Porous Alumina Templates,” Journal of Nanoparticle Research, Vol. 5, No. 1, 2003, pp. 17-30. doi:10.1023/A:1024479827507
[2] N. Tasaltina, S. uztürka, H. Yüzerb and Z. Z. uztürk, “Simple Fabrication of Highly Ordered AAO Nanotubes,” Journal of Optoelectronic and Biomedical Materials, Vol. 1, No. 1, 2009, pp. 79-84.
[3] S. Phok, S. Rajaputra and V. P. Singh, “Copper Indium Diselenide Nanowire Arrays by Electrodeposition in Porous Alumina Templates,” Nanotechnology, Vol. 18, No. 47, 2007, pp. 1-8.
[4] V. Sadasivan, C. P. Richter, L. Menon and P. F. Williams, “Electrochemical Self-Assembly of Porous Alumina Templates,” 2005.
[5] H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina,” Science, Vol. 268, No. 5216, 1995, pp. 1466-1468. doi:10.1126/science.268.5216.1466
[6] C. Sousab, D. C. Leitaoa, J. Venturaa, A. M. Pereiraa, M. Amadoa, J. B. Sousaa and J. P. Araújo, “Nanoporous Self-Organized Anodic Alumina Templates,” 2007.
[7] P. Chowdhury, K. Raghuvaran, M. Krishnan, H. C. Barshilia and K. S. Rajam, “Effect of Process Parameters on Growth Rate and Diameter of Nanoporous Alumina Templates,” Bulletin of Materials Science, Vol. 34, No. 3, 2011, pp. 423-427. doi:10.1007/s12034-011-0104-6
[8] K .M. Alam, A. P. Singh, S. C. Bodepudi and S. Pramanik, “Fabrication of Hexagonally Ordered Nanopores in Anodic Alumina: An Alternative Pretreatment,” Surface Science, Vol. 605, No. 3-4, 2011, pp. 441-449. doi:10.1016/j.susc.2010.11.015
[9] X. Wang and G.-R. Han, “Fabrication and Characterization of Anodic Aluminum Oxide Template.” Microelectronic Engineering, Vol. 66, No. 1-4, 2003, pp. 166-170. doi:10.1016/S0167-9317(03)00042-X
[10] K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn and U. Go1sele, “Self-Ordering Regimes of Porous Alumina: The 10% Porosity Rule,” Nano Letters, Vol. 2, No. 7, 2002, pp. 677-680.
[11] F. Li, Z. Zang and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodic Aluminum Oxide,” Chemistry of Materials, Vol. 10, No. 9, 1998, pp. 2470-2480. doi:10.1021/cm980163a
[12] H. J. Oh, J. H. Lee, Y. Jeong, S. J. Suh and C. S. Chi, “A Control of the Nanopore Regularity in Alumina Layer,” Materials Science Forum, Vol. 475-479, 2005, pp. 3919-3922. doi:10.4028/www.scientific.net/MSF.475-479.3919
[13] L. Zaraska, G. D. Sulka1 and M. Jaskula, “Properties of Nanostructures Obtained by Anodization of Aluminum in Phosphoric Acid at Moderate Potentials,” Journal of Physics: Conference Series, Vol. 146, No. 1, 2009, Article ID: 012020.
[14] W. Lee, K. Nielsch and U. Gosele, “Self-Ordering Behavior of Nanoporous Anodic Aluminum Oxide (AAO) in Malonic Acid Anodization,” Nanotechnology, Vol. 18, No. 47, 2007, Article ID: 475713.
[15] W. Wei, S. Li, J. Liu and J. Zhang, “Size-Controlled Synthesis of Highly Ordered Nanoporous AAO Membranes,” Nanoscience, Vol. 11, 2006, pp. 157-160.
[16] Y. Xu, G. E. Thompson and G. C. Wood, “Mechanism of Anodic Film Growth on Aluminium,” Transactions of the Institute of Metal Finishing, Vol. 63, 1986, pp. 98-103.
[17] O. Sullivan and G. C. Wood, “The Morphology and the Mechanism of Formation of Porous Anodic Films on Aluminium,” Proceedings of the Royal Society A, Vol. 317, 1970, pp. 511-543.
[18] V. P. Parkhutik and V. I. Shershulsky, “Theoretical Modeling of Porous Oxide Growth on Aluminum,” Journal of Physics D: Applied Physics, Vol. 25, No. 8, 1992, pp. 1258-1263. doi:10.1088/0022-3727/25/8/017
[19] J. Siejka and C. Ortega, “Study of Field-Assisted Pore Formation in Compact Oxide Films on Aluminium,” Journal of the Electrochemical Society, Vol. 124, No. 6, 1977, pp. 883-891. doi:10.1149/1.2133446
[20] G. E. Thompson and G. C. Wood, “Anodic Films on Aluminum,” In: J. C. Scully, Ed., Treatise on Material Science and Technology, Academic Press, New York, 1983.
[21] K. Shimizu, K. Kobayashi, G. E. Thompson and G. C. Wood, “A Novel Marker for the Determination of Transport Numbers during Anodic Oxide Barrier Growth of Aluminum,” Philosophical Magazine Part B, Vol. 64, No. 3, 1991, pp. 345-353. doi:10.1080/13642819108207625
[22] O. Jessensky, F. Múller and U. Gósele, “Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,” Applied Physics Letters, Vol. 72, No. 10, 1998, pp. 1173-1175. doi:10.1063/1.121004
[23] A. P. Li, F. Müller, A. Birner, K. Nielsch and U. Gosele, “Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina,” Journal of Applied Physics, Vol. 84, No. 11, 1998, pp. 6023-6027. doi:10.1063/1.368911
[24] A. P. Li, F. Müller, A. Birner, K. Nielsch, U. Gosele and J. Vac, “Polycrystalline Nanopore Arrays with Hexagonal Ordering on Aluminum,” Journal of Vacuum Science & Technology A, Vol. 17, No. 4, 1999, pp. 1428-1432.
[25] G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson and J. S. Goode, “Nucleation and Growth of Porous Anodic Films on Aluminum,” Nature, Vol. 272, No. 5652, 1978, pp. 433-435. doi:10.1038/272433a0

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.