The Hydrogen Atom Fractal Spectra, the Missing Dark Energy of the Cosmos and Their Hardy Quantum Entanglement

DOI: 10.4236/ijmnta.2013.23023   PDF   HTML     7,491 Downloads   11,305 Views   Citations


In this letter, I outline the intimate connection between the fractal spectra of the exact solution of the hydrogen atom and the issue of the missing dark energy of the cosmos. A proposal for a dark energy reactor harnessing the dark energy of the Schrodinger wave via a quantum wave nondemolition measurement is also presented.

Share and Cite:

M. Naschie, "The Hydrogen Atom Fractal Spectra, the Missing Dark Energy of the Cosmos and Their Hardy Quantum Entanglement," International Journal of Modern Nonlinear Theory and Application, Vol. 2 No. 3, 2013, pp. 167-169. doi: 10.4236/ijmnta.2013.23023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. M. Petrusevski, “The H-Atom and the Golden Ratio: A Possible Link,” Journal of Chemical Education, Vol. 83, No. 1, 2006, p. 40.
[2] V. M. Petrusevski, “The First Excited State of the Hydrogen Atom and the Golden Ratio: A Link or a Mere Coincidence?” Bulletin of the Chemists and Technologists of Macedonia, Vol. 25, No. 1, 2006, pp. 61-63.
[3] C. L. Devito and W. A. Little, “Fractal Sets Associated with Function: The Spectral Lines of Hydrogen,” Physical Review A, Vol. 38, No. 12, 1988, pp. 6362-6364. doi:10.1103/PhysRevA.38.6362
[4] A. C. Phillips, “Introduction to Quantum Mechanics,” John Wiley & Sons Ltd., Chichester, 2003.
[5] M. S. El Naschie, “Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry,” Journal of Quantum Information Science, Vol. 1, No. 2, 2011, pp. 50-53. doi:10.4236/jqis.2011.12007
[6] J.-H. He, et al., “Quantum Golden Mean Entanglement Test as the Signature of the Fractality of Micro Spacetime,” Nonlinear Science Letters B, Vol. 1, No. 2, 2011, pp. 45-50.
[7] L. Hardy, “Nonlocality of Two Particles without Inequalities for Almost All Entangled States,” Physical Review Letters, Vol. 71, No. 11, 1993, pp. 1665-1668. doi:10.1103/PhysRevLett.71.1665
[8] M. S. El Naschie, “A Review of E-Infinity Theory and the Mass Spectrum of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 19, No. 1, 2004, pp. 209-236. doi:10.1016/S0960-0779(03)00278-9
[9] M. S. El Naschie, “The Theory of Cantorian Spacetime and High Energy Particle Physics (An Informal Review),” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635-2646. doi:10.1016/j.chaos.2008.09.059
[10] R. Penrose, “The Road to Reality,” Jonathan Cape, London, 2004.
[11] R. Mauldin and S. Williams, “Random Recursive Constructions: Asymptotic Geometries and Topological Properties,” Transactions of the American Mathematical Society, Vol. 295, No.1. 1986, pp. 325-346. doi:10.1090/S0002-9947-1986-0831202-5
[12] R. Mauldin, “On the Hausdorff Dimension of Graphs and Recursive Object,” In: G. Mayer-Kress, Ed., Dimension and Entropies in Chaotic Systems, Springer, Berlin, 1986, pp. 28-33.
[13] L. Marek-Crnjac, “The Hausdorff Dimension of the Penrose Universe,” Physics Research International, Vol. 2011, 2011, pp. 1-4.
[14] A. Connes, “Noncommutative Geometry,” Academic Press, San Diego, 1994.
[15] M. Gardener, “Penrose Tiles to Trapdoor Ciphers,” W.H. Freeman, New York, 1989.
[16] L. Amendola and S. Tsujikawa, “Dark Energy: Theory and Observations,” Cambridge University Press, Cambridge, 2010.
[17] L. Marek-Crnjac, et al., “Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology,” International Journal of Modern Nonlinear Theory and Application, Vol. 2, No. 1A, 2013, pp. 78-88. doi:10.4236/ijmnta.2013.21A010
[18] M. S. El Naschie, “A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory,” Journal of Quantum Information Science, Vol. 3, No. 1, 2013, pp. 23-26. doi:10.4236/jqis.2013.31006
[19] M. S. El Naschie, “Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a ‘Halo’ Energy of the Schrodinger Quantum Wave,” Journal of Modern Physics, Vol. 4, No. 5, 2013, pp. 591-596. doi:10.4236/jmp.2013.45084
[20] S. Brandt and H. Dahmen, “The Picture Book of Quantum Mechanics,” Springer, New York, 1995, pp. 237-238.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.