Time-seismicity evolution and seismic risk assessment of the Arabian plate

DOI: 10.4236/ns.2013.59126   PDF   HTML     5,811 Downloads   7,469 Views   Citations


The seismicity of the Arabian plate, which is the aim of this paper, is controlled by the ZagrosTaurus collision zone in the North, the Indian expansion zone and the Arab golf in the South and the East, the Dead Sea Fault, the North continuity of the Red Sea, and the Syrian rift, which links the rigid Arabian plate to the mobile ophiolite belt of Cyprus-Southern Turkey in the West. These major elements with their related fracture system, make the Arabian plate an important seismic centre. To attain our purpose, a variable methodology is used in: measurements of movement rate-displacement in the field, the analysis of historical and recent seismic data, and physical effects on the structures. The movement rate-displacement, calculated in the field by different specialists, varies from 2 to 6 mm/year. This rate increases from 2 - 3 mm/year in the North, to 6 mm in the South. These estimations are confirmed by historical seismic data, the recent seismic recorded by the Arab seismic centers, and physical effects on the building structures in the region. The analysis of historical and recent seismic data recorded in the seismic centre show that the seismicity in this plate, tend to fade out with time. This result is in agreement with recent estimations on the movement rate, and in line with the decrease of major seismic intensity, which has occurred during the last millennium. A conclusion of time-evolution seismicity is traced, and a seismic zoning map, for the Arabian plate, using movement rate, seismic data, and tectono-geodynamic analysis, is proposed.

Share and Cite:

Bilal, A. (2013) Time-seismicity evolution and seismic risk assessment of the Arabian plate. Natural Science, 5, 1019-1024. doi: 10.4236/ns.2013.59126.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Al Abdalla, A. (2008) Evolution tectonique de la platform Arabe en Syrie depuis le Mesozoique. Thesis Doctorat, Universite Pierre et Marie Curie, 302 p.
[2] Juteau, T. (1974) Les ophiolites de la nappe d’Antalya, Turquie. Thèse d’Etat, Université Nancy, 420 p.
[3] Parrot, J.-P. (1977) Assemblage ophiolitique du BaerBassit et termes effusifs du volcano-sédimentaire pétrologique d’un fragment de la cro?te océanique téthysienne chariée sur la plateforme syriennne. ORSTOM, Paris, 72.
[4] Butler, L.W., Spencer, S. and Griffiths H.M. (1997) Transcurrent fault activity on the Dead Sea transform in Lebanon and its implications for plate tectonics and seismic hazard. Journal of the Geological Society, London, 154, 757-760. doi:10.1144/gsjgs.154.5.0757
[5] Girdler, R.W. (1990) The Dead Sea transform fault system. Tectonophysics, 180, 1-13. doi:10.1016/0040-1951(90)90367-H
[6] Al Damegh, K., Sandvol, E. and Barazangi, M. (2005) Crustal structure of the Arabian Plate: New constraints from the analysis of teleseismic receiver functions. Earth and Planetary Sciences Letters, 231, 177-196. doi:10.1016/j.epsl.2004.12.020
[7] Sosson, M., Rolland, Y., Corsini, M., Danelian, T., Stephan, J.-F., Avagyan, A., Melkonian, R., Jrbashyan, R., Melikian, L. and Galoin, G. (2005) Tectonic evolution of the Lesser Caucasus (Armenia) revisited in the light of new structural and stratigraphical results. European Geosciences Union. Geophysical Research Abstracts, 7, Article ID: 06224.
[8] Molinaro, M., Leturmy, P., Guezou, J.C., Frizon de Lamotte, D. and Eshraghi, S.A. (2005) The structure and Kinematic of the southeastern Zagros fold-thrust belt, Iran: from thin-skinned to thick-skinned tectonics. Tectonics, 24, Article ID: PTC3007.
[9] Agard, P., Monie, P., Gerber, W., Omrani, J., Molinaro, M., Meyer, B., Labrousse, L., Vrielynk, B., Jolivet, L. and Yamato, P. (2006) Transient, synobduction exhumation of Zagros blueschists inferred from P-T, deformation, time, and kinematic constraints: Implications for newtethyan wedge dynamics. Journal of Geophysical Research, 111, Article ID: B11401. doi:10.1029/2005JB004103
[10] Cetin, H., Guneyli, H. and Meyer, L. (2003) Paleoseismology of the Palu-Lake hazar segment of the East Anatolian fault zone, Turkey. Tectonophysics, 374, 163-197. doi:10.1016/j.tecto.2003.08.003
[11] Bosworth, W., Huchon, P. and McClay, K. (2005) The Red Sea and Gulf of Aden Basin. Journal of Africa Tectonophysics, 209, 115-137.
[12] Barrier, E., Chamot-Rooke, N. and Giordano, G. (2004) Carte geodynamique de la Méditerranée. Commission de la Carte Géologique du Monde.
[13] Bilal, A. (2009) Tectono-seismicity and petrological study of the Syrian rift. Tishreen University Journal for Research Scientific Studies, Basic Sciences, 31, 127-145.
[14] Bilal, A. and Touret, J.L. (2001) Les enclaves du volcanisme récent du rift Syrien. Bulletin de la Societe Geologique de France, 172, 1-14.
[15] Bilal, A. and Sheleh, F. (2004) Un “point chaud” sous le système du rift Syrien: Données pétrologiques complémentaires sur les enclaves du volcanisme récent. Comptes Rendus Geoscience, 366, 197-204. doi:10.1016/j.crte.2003.09.016
[16] Bilal, A. (2009) Seismicity and volcanism in the rifted zone of western Syria. Comptes Rendus Geoscience, 341, 299-305. doi:10.1016/j.crte.2008.11.005
[17] Bilal, A. and Mahmoud, M. (1997) Soil-structure interaction effect during earthquakes in Syria. International PostSMIRT Conference on Seismic Isolation. Taormina, 25-27 August 1997, 837-844.
[18] US Geological Survey (1999) Special report: The hector mine earthquake 10/16/99.
[19] Khair, K., Karakasis, G.F. and Papadimetriou, E.E. (2000) Seismic zonation of the Dead Sea transform fault area. Annali di Geophisica, 43, 61-79.
[20] Meghraui, M., Gomez, F., Sbeinati, R., Woerd, J.V.D., Mouty, M., Al-Darkal, A.N., Radwan, Y., Layyons, I., Al Najjjar, H., Darawcheh, R., Hijazi, F., Al-Ghazzi, R. and Barazangi, M. (2003) Evidence for 830 years of seismic quiescence from palaeoseismology, archaeology seismology, and historical seismicity along the Dead Sea fault in Syria. Earth and Planetary Science Letters, 210, 35-52. doi:10.1016/S0012-821X(03)00144-4
[21] Le Béon, M. (2008) Cinématique d’un segment de faille decrochante à différentes échelles de temps: La faille de Wadi Araba, segment sud de la faille transformant de Levant. Thèse Doctorat, Université Paris, VI.
[22] King, G. (2004) Les séismes ne se répètent pas. La Recherche, 380, 14-15.
[23] Maderiaga, R. (2004) Chaque seisme est unique. La Recherche, 275, 14-15.
[24] Taher, M.A. (1979) Documents historiques des tremblements de terre en Syrie depuis l’Islam jusqu’à XII siècle “hygerique”. Thèse Université, Paris, 300 p.
[25] Al-Tarazi, E. (1999) Regional seismic hazard study for the eastern Mediterranean (Trans-Jordan, Levant and Antakia) and Sinai Region. Journal of African Earth Sciences, 3, 743-750. doi:10.1016/S0899-5362(99)00042-1
[26] UNESCO (1983) Assessment and mitigation of earthquakes risk in the Arab region. UNESCO, AFESD/IDP.
[27] Stiro, S. (1992) Epicenters of earthquakes from 19611983, USGS. Workshop, Damascus, 32-36.
[28] Sbeinati, M. and Darawcheh, R. (1992) Seismological bulletin for earthquakes in and around Syria. Report International, SAES, Damascus.
[29] Chorowicz, J., Dhont, D., Ammar, O., Rukieh, M. and Bilal, A. (2005) Tectonics of the Pliocene Homs Basalts (Syria) and implications for the Dead Sea fault zone activity. Journal of the geological Society, London, 162, 259-271.
[30] Rojay, B., Heimann, A. and Toprak, V. (2001) Neotectonic and volcanic characteristics of the Karasu fault zone (Anatolia, Turkey): The transition between the Dead Sea Transform and the East Anatolian fault zone. Geodynamica Acta, 14, 197-212. doi:10.1016/S0985-3111(00)01053-6

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.