Molybdenite as a Rhenium Carrier: First Results of a Spectroscopic Approach Using Synchrotron Radiation

DOI: 10.4236/jmmce.2013.15032   PDF   HTML   XML   5,499 Downloads   6,900 Views   Citations


The chemical and physical properties of rhenium render it a highly demanded metal for advanced applications in important industrial fields. This very scarce element occurs mainly in ores of porphyry copper-molybdenum deposits associated with the mineral molybdenite, MoS2, but it has also been found in granite pegmatites and quartz veins as well as in volcanic gases. Molybdenite is a typical polytype mineral which crystal structure is based on the stacking of [S-Mo-S] with molybdenum in prismatic coordination by sulphide anions; however, it is not yet clearly established if rhenium ions replace Mo4+ cations in a disordered way or else, if such replacement gives rise to dispersed nanodomains of a rhenium-rich phase. As a contribution to clarify this question, an X-ray absorption spectroscopy (XANES) study using synchrotron radiation was performed at the Re L3-edge of rhenium-containing molybdenite samples. Obtained results are described and discussed supporting the generally accepted structural perspective that rhenium is mainly carried by molybdenite through the isomorphous replacement of Mo, rather than by the formation of dispersed Re-specific nanophase(s).

Share and Cite:

T. da Silva, M. Figueiredo, D. de Oliveira, J. Veiga and M. Batista, "Molybdenite as a Rhenium Carrier: First Results of a Spectroscopic Approach Using Synchrotron Radiation," Journal of Minerals and Materials Characterization and Engineering, Vol. 1 No. 5, 2013, pp. 207-211. doi: 10.4236/jmmce.2013.15032.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] I. Noddack and W. Noddack, “Die Geochemie des Rheniums,” Zeitschrift für Physikalische Chemie, Vol. 154, Abt. A, 1931, pp. 207-244.
[2] S. Ishihara, “Rhenium Contents of Molybdenites in Granitoid-Series Rocks in Japan,” Economic Geology, Vol. 83, No. 5, 1988, pp. 1047-1051. doi:10.2113/gsecongeo.83.5.1047
[3] A. A. Kremenetsky and I. V. Chaplygin, “Concentration of Rhenium and Other Rare Metals in Gases of the Kudryavy Volcano (Iturup Island, Kurile Islands),” Doklady Earth Sciences, Vol. 430, No. 1, 2010, pp. 114-119. doi:10.1134/S1028334X10010253
[4] B. Aminzadeh, J. Shahabpour and M. Maghami, “Variation of Rhenium Contents in Molybdenites from the Sar Cheshmeh Porphyry Cu-Mo Deposit in Iran,” Resource Geology, Vol. 61, No. 3, 2011, pp. 290-295. doi:10.1111/j.1751-3928.2011.00165.x
[5] A. N. Berzina, V. I. Sotnikov, M. Economou-Eliopoulos and D. G. Eliopoulos, “Distribution of Rhenium in Mo- lybdenite from Porphyry Cu-Mo and Mo-Cu Deposits of Russia (Siberia) and Mongolia,” Ore Geology Reviews, Vol. 26, No. 1-2, 2005, pp. 91-113. doi:10.1016/j.oregeorev.2004.12.002
[6] M. Brown, F. Lazo, P. Carter, B. Goss and D. Kirwin, “The Geology and Discovery of the Merlin Mo-Re Zone of the Mount Dore Deposit, Mount Isa Inler, NW Queensland, Australia,” SGA News, Vol. 27, No. 1, 2010, pp. 9-15.
[7] A. I. Grabezhev and E. S. Shagalov, “Rhenium Distribution in Molybdenite: Results of Microprobe Scanning (Copper Porphyry Deposits, the Urals),” Doklady Earth Sciences, Vol. 431, No. 1, 2010, pp. 351-355. doi:10.1134/S1028334X10030189
[8] O. B. Lavrov and L. V. Kuleshevich, “The First Find of Rhenium Minerals in Karelia,” Doklady Earth Sciences, Vol. 432, No. 1, 2010, pp. 598-601. doi:10.1134/S1028334X10050107
[9] P. C. Voudouris, V. Melfos, P. G. Spry, L. Bindi, T. Kartal, K. Arikas, R. Moritz and M. Ortelli, “Rhenium-Rich Molybdenite and Rheniite in the Pagoni Rachi Mo-Cu-Te-Ag-Au Prospect, Northern Greece: Implications for the Re Geochemistry of Porphyry-Style Cu-Mo and Mo Mineralization,” Canadian Mineralogist, Vol. 47, No. 5, 2009, pp. 1013-1036. doi:10.3749/canmin.47.5.1013
[10] M. Fleischer, “The Geochemistry of Rhenium, with Special Reference to Its Occurrence in Molybdenite,” Economic Geology, Vol. 54, No. 8, 1959, pp. 1406-1413.
[11] K. Terada, S. Osaki, S. Ishihara and T. Kiba, “Distribution of Rhenium in Molybdenites from Japan,” Geochemical Journal, Vol. 4, No. 3, 1971, pp. 123-141. doi:10.2343/geochemj.4.123
[12] M. A. Korzhinsky, S. I. Tkachenko, K. I. Shmulovich, Y. A. Taran and G. S. Steinberg, “Discovery of a Pure Rhenium Mineral at Kudriavy Volcano,” Nature, Vol. 369, No. 6475, 1994, pp. 51-52.
[13] H. H. Murray, S. P. Kelty and R. R. Chianelli, “Structure of Rhenium Disulfide,” Inorganic Chemistry, Vol. 33, No. 19, 1994, pp. 4418-4420. doi:10.1021/ic00097a037
[14] V. S. Znamensky, M. A. Korzhinsky, G. S. Steinberg, S. I. Tkachenko, A. I. Yakushev, I. P. Laputina, I. A. Bryzgalov, N. D. Samotoin, L. O. Magazina, O. V. Kuzmina, N. I. Organova, V. A. Rassulov and I. V. Chaplygin, “Rheniite, ReS2, the Natural Rhenium Disulphide from Fumaroles of of Kudryavy Volcano, Iturup Island, Kurile Islands,” Proceedings of the Russian Mineralogical Society, Vol. 134, No. 5, 2005, pp. 32-39.
[15] K. K. Kojonen, A. C. Roberts, O. P. Isomäki, V. V. Knauf, B. Johanson and L. Pakkanen, “Tarkianite, (Cu,Fe)(Re,Mo)4S8, a New Mineral Species from the Hitura Mine, Nivala, Finland,” Canadian Mineralogist, Vol. 42, No. 2, 2004, pp. 539-544. doi:10.2113/gscanmin.42.2.539
[16] G. Kullerud, G. Donnay and J. D. H. Donnay, “Omission Solid-Solution in Magnetite: Kenotetrahedral Magnetite,” Zeitschrift für Kristallographie—Crystalline Materials, Vol. 128, No. 1-2, 1969, pp. 1-17.
[17] A. Naor, N. Eliaz, E. Gileadi and S. R. Taylor, “Properties and Applications of Rhenium and Its Alloys,” AMMTIAC Quarterly, Vol. 5, No. 1, 2010, pp. 11-15.
[18] B. Krebs, H. Müller and H. Beywr, “A New Type of Oxide Structure: The Crystal Structure of Rhenium (VII) Oxide,” Chemical Communications (London), Vol. 1968, No. 5, 1968, pp. 263-264.
[19] KGHM Ecoren, 2007.
[20] K. Salazar and M. K. McNutt, “Mineral Commodity Summaries 2012,” US Geological Survey, Reston, Virginia, 2012.
[21] R. J. Traill, “A Rhombohedral Polytype of Molybdenite,” Canadian Mineralogist, Vol. 7, No. 3, 1963, pp. 524-526.
[22] Y. Takeuchi and W. Nowacki, “Detailed Crystal Structure of Rhombohedral MoS2 and Systematic Deduction of Possible Polytypes of Molybdenite,” Schweizer Mineralogische und Petrographische Mitteilungen, Vol. 44, No. 1, 1964, pp. 105-120.
[23] F. E. Wickman and D. K. Smith, “Molybdenite Polytypes in Theory and Occurrence. I. Theoretical Considerations of Polytypism in Molybdenite,” American Mineralogist, Vol. 55, No. 11-12, 1970, pp. 1843-1856.
[24] J. W. Frondel and F. E. Wickman, “Molybdenite Polytypes in Theory and Occurrence. II. Some Naturally-Occurring Polytypes of Molybdenite,” American Mineralogist, Vol. 55, No. 11-12, 1970, pp. 1857-1875.
[25] S. R. Bare, S. D. Kelly, F. D. Vila, E. Boldingh, E. Karapetrova, J. Kas, G. E. Mickelson, F. S. Modica, N. Yang and J. J. Rehr, “Experimental (XAS, STEM, TPR, and XPS) and Theoretical (DFT) Characterization of Supported Rhenium Catalysts,” Journal of Physical Chemistry C, Vol. 115, No. 13, 2011, pp. 5740-5755. doi:10.1021/jp1105218
[26] L. H. Ahrens, “The Use of Ionization Potentials Part 1. Ionic Radii of the Elements,” Geochimica et Cosmochimica Acta, Vol. 2, No. 3, 1952, pp. 155-169.doi:10.1016/0016-7037(52)90004-5
[27] D. Selby and R. A. Creaser, “Macroscale NTIMS and Microscale LA-MC-ICP-MS Re-Os Isotopic Analysis of Molybdenite: Testing Spatial Restrictions for Reliable Re-Os Age Determinations, and Implications for the Decoupling of Re and Os within Molybdenite,” Geochimica et Cosmochimica Acta, Vol. 68, No. 19, 2004, pp. 3897- 3908. doi:10.1016/j.gca.2004.03.022
[28] Y. Takahashi, T. Uruga, K. Suzuki, H. Tanida, Y. Tereda and K. H. Hattori, “An Atomic Level Study of Rhenium and Radiogenic Osmium in Molybdenite,” Geochimica et Cosmochimica Acta, Vol. 71, No. 21, 2007, pp. 5180-5190. doi:10.1016/j.gca.2007.08.007
[29] Strukturbericht Band 1, 1913-1926, pp. 164-166.
[30] A. N. Zelikman, G. V. Indenbaum, M. V. Teslitskaya and V. P. Shalankova, “Structural Transformations in Synthe- tic MoS2,” Soviet Physics Crystallography, Vol. 14, No. 1, 1970, pp. 687-691.
[31] J. Lima-de-Faria and M. O. Figueiredo, “Standard Sheets for Condensed Models of Crystal Structures. I. Structures Based on Close Packings,” Garcia de Orta, Sér. Geologia, Vol. 13, No. 1, 1990, pp. 43-58.
[32] R. J. J. Newberry, “Polytypism in Molybdenite (I): A Non-Equilibrium Impurity-Induced Phenomenon,” American Mineralogist, Vol. 64, No. 7-8, 1979, pp. 758-767.
[33] M. Ya. Somina, “Trigonal Molybdenite from East Sibe- rian Carbonatite,” Procd. Earth Sci. Sect, Vol. 167, 1966, pp. 898-901.
[34] V. Melfos, M. Vavelidis, A. Filippidis, G. Christofides and E. Evangelou, “Re-Rich and Re-Poor Molybdenite in the Maronia Rhyolitic Intrusion, Northeastern Greece,” In: M. Pagel and J. L. Leroy, Eds., Source, Transport and Deposition of Metals, Balkema, 1991, pp. 775-777.
[35] “High-Grade Molybdenum and Rhenium Intercepts Drilled on Ivanhoe Australia’s Merlin Project,” 2009.
[36] A. Machado e Costa, “Inventory of Minerals,” Mineralogical and Geological Museum of Lisbon University, Lisbon, 1937.
[37] T. L. Walker, “Report on the Molybdenum Ores of Canada,” Government Printing Bureau, Department of Mines, Ottawa, No. 93, 1911, pp. 30-31.
[38] A. L. Ankudinov, B. Ravel and J. J. Rehr, “Manual of FEFF8.10 Program,” The FEFF Project, Department of Physics, University of Washington, Seattle, 2000.
[39] Strukturbericht Band 1, 1913-1926, pp. 742-743.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.