A Quantum Field Theory Toy-Model for Magnetic Epigenetic ()
Fabio Burigana,
Euro Spallucci,
Claudio Verzegnassi
AMEC (Association for Medicine and Complexity), Trieste, Italy.
Dipartimento di Fisica, Sezione Teorica, Università di Trieste and INFN, Trieste, Italy.
Dipartimento di Fisica, Sezione Teorica, Università di Trieste and INFN, Trieste, Udine, Italy.
DOI: 10.4236/jmp.2013.48152
PDF
HTML XML
3,933
Downloads
5,721
Views
Citations
Abstract
We consider the effects that a magnetic field has on the observable
properties of an elementary one-fermion state, assumed for simplicity to be
that of one electron. We show that for a weak intensity of the field these
effects can be very simply computed in a quantum field theory theoretical
framework, assuming the minimal form of the electromagnetic interaction and the
validity of the Dirac equation. The effects proceed via preliminary, magnetic
field induced, modification of the four components of the spinor field. These
generate consequent modifications of the various observable properties of the
fermion, which can always be simply expressed in terms of the four spinor field
components. A few general features of the various effects are discussed, and a
number of possible analogies with the fascinating medical description of the
epigenetic process for an organic cell are finally proposed.
Share and Cite:
F. Burigana, E. Spallucci and C. Verzegnassi, "A Quantum Field Theory Toy-Model for Magnetic Epigenetic,"
Journal of Modern Physics, Vol. 4 No. 8, 2013, pp. 1133-1138. doi:
10.4236/jmp.2013.48152.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
C. Verzegnassi, Journal of Modern Physics, Vol. 4, 2013, pp. 638-643. doi:10.4236/jmp.2013.45092
|
[2]
|
M. Biava, “Private Communication.”
|
[3]
|
M. E. Peskin and D. V. Schroeder, “Introduction to the Theory of Quantized Fields,” Addison-Wesley, 1995, p. 52.
|
[4]
|
E. Noether, Gott. Nachr. Klasse, Vol. 1918, 1981, pp. 235-237.
|
[5]
|
N. N. Bogoliubov, D. V. Shirkov, “Introduction to the Theory of Quantized Fields,” Interscience Publishers, Inc., New York, 1959, p. 81.
|
[6]
|
K. Luger, A. W. Mader, R. K. Richmond, D. F. Sargent and T. J. Richmond, Nature, Vol. 389, 1997, pp. 251-260.
doi:10.1038/38444
|
[7]
|
C. Ventura, et al., Cell Transplant, Vol. 6, 2012, p. 1225.
|
[8]
|
A. Lima-de-Faria, “Evoluzione Senza Selezione,” Nova Scripta Edizioni, Genova, 2003.
|