Cast Intermetallic Alloys and Composites Based on Them by Combined Centrifugal Casting—SHS Process


This work aims to establish a scientific and engineering background in the production of cast multicomponent alloys and metalmartix composite (MMCs) via Self-Propagating High Temperature Synthesis (SHS, combustion synthesis) which is a novel process technique regarding fast and low-cost production ability. We carried out the search for reactive systems and process parameters that would ensure preparation of cast multicomponent materials in a single process. The principles and methods of the SHS thermite-type reaction processes have been investigated under high-gravity values applying loads up to 1000 g with special centrifuge set-up. In this way we expected to improve the yield of target product, remove gaseous byproducts, diminish the grain size in the product, and make product composition more uniform. The obtained results can be expected to make a theoretical background for industrial-scale manufacturing of heat-resistant intermetallic alloys, master alloys, catalysts, MMCs etc.

Share and Cite:

Sanin, V. , Andreev, D. , Ikornikov, D. and Yukhvid, V. (2013) Cast Intermetallic Alloys and Composites Based on Them by Combined Centrifugal Casting—SHS Process. Open Journal of Metal, 3, 12-24. doi: 10.4236/ojmetal.2013.32A2003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. T. Sims, N. S. Stoloff and W. C. Hagel, “Superalloys II,” John Wiley & Sons, New York, 1987.
[2] R. D. Noebe, R. R. Bowman and M. V. Nathal, “Physical Metallurgy and Processing of Intermetallic Compounds,” Chapman & Hall, New York, 1996, pp. 212-296. doi:10.1007/978-1-4613-1215-4_7
[3] G. Frommeyer and R. Rablbauer, “High Temperature Materials Based on the Intermetallic Compound NiAl Reinforced by Refractory Metals for Advanced Energy Conversion Technologies, Materials Technology,” Steel Research International, Vol. 79, No. 7, 2008, pp. 507-512.
[4] S. Rawal, “Metal-Matrix Composites for Space Applications,” JOM, Vol. 53, No. 4, 2001, pp. 14-17. doi:10.1007/s11837-001-0139-z
[5] J. Baetz, “Metal Matrix Composites: Their Time Has Come,” Aerospace America, 1998, pp. 14-16.
[6] S. T. Mileiko, A. V. Serebryakov, V. M. Kiiko, A. A. Kolchin, V. N. Kurlov and N. I. Novokhatskaya, “Single Crystalline Mullite Fibres Obtained by the Internal Crystallisation Method: Microstructure and Creep Resistance,” Journal of the European Ceramic Society, Vol. 29, No. 3, 2009, pp. 337-345.
[7] A. J. Smith, L. O. Garciano, T. Tam and M. S. Wainwright, “Structure and Kinetics of Leaching for the Formation of Skeletal (Raney) Catalysts,” Industrial & Engineering Chemistry Research, Vol. 47, No. 5, 2008, pp. 1409-1415. doi:10.1021/ie070801b
[8] B. W. Hoffer, E. Crezee, F. Devred, P. R. M. Mooijman, W. G. Sloof, P. J. Kooyman, A. D. van Langeveld, F. Kapteijn and J. A. Moulijn, “The Role of the Active Phase of Raney-Type Ni Catalysts in the Selective Hydrogenation of d-Glucose to d-Sorbitol,” Applied Catalysis A: General, Vol. 253, No. 2, 2003, pp. 437-452. doi:10.1016/S0926-860X(03)00553-2
[9] A. G. Merzhanov and S. Yu. Sharivker, “Self-Propagating High-Temperature Synthesis of Carbides, Nitrides, and Borides,” In: Y. G. Gogotsi and R. A. Andrievski, Eds., Materials Science of Carbides, Nitrides, and Borides, Kluwer Academic Publishers, Dordrecht, 1999, pp. 205-222. doi:10.1007/978-94-011-4562-6_12
[10] N. P. Lyakishev, Yu. L. Pliner, G. F. Ignatenko and S. I. Lappo, “Alyuminotermiya (Aluminothermy),” Metallurgiya, Moscow, 1978, 421 p.
[11] V. I. Yukhvid, G. A. Vishnyakova, S. L. Silyakov, V. N. Sanin and A. R. Kachin, “Structural Macrokinetics of Alumothermic SHS Processes,” International Journal of Self-Propagating High-Temperature, Vol. 5, No. 1, 1996, pp. 93-105.
[12] A. G. Merzhanov, “SHS Technology,” Advanced Materials, Vol. 4, No. 4, 1992, pp. 294-295.
[13] V. I. Yukhvid, “Effect of Convective Motion on the Flame Structure in Combustion Waves Propagating in Heterogeneous Systems under Natural and Artificial Gravity Conditions,” Combustion, Explosion, and Shock Waves, 2009, Vol. 45, No. 4, pp. 421-427. doi:10.1007/s10573-009-0052-2
[14] V. I. Yukhvid, V. N. Sanin and A. G. Merzhanov, “The Influence of High Artificial Gravity on SHS Processes. Processing by Centrifugation,” Kluwer Academic, Dordrecht, 2001, p. 185. doi:10.1007/978-1-4615-0687-4_26
[15] V. N. Sanin and V. I. Yukhvid, “Effect of Artificial Gravity on SHS Foam Materials Based on Ti-C,” Journal of Materials Processing and Manufacturing Science, Vol. 7, No. 1, 1998, pp. 115-125.
[16] V. N. Sanin and V. I. Yukhvid, “Infiltration of the Melt under the Influence of Centrifugal Force in High-Temperature Layered Systems,” Inorganic Materials, Vol. 41, No. 2, 2005, pp. 1-9.
[17] V. N. Borshch, E. V. Pugacheva, S. Ya. Zhuk, et al., “Multi-Component Metallic Catalysts for Deep Oxidation of Carbon Monoxide and Hydrocarbons,” Doklady Akademii Nauk, Vol. 419, No. 6, 2008, pp. 775-777.
[18] Y. W. Kim and F. H. Foes, “Physical Metallurgy of Titanium Aluminides: Microstructure/Property Relationships in Titanium Alloys and Titanium Aluminides,” In: S. H. Wang, Ed., High Temperature Aluminides and Intermetallics, TMS, Warrendale, 1990, p. 4496.
[19] “Materials Properties Handbook: Titanium Alloys,” ASM International, 1994.
[20] J. Davies, A. Nozue, S. Nakabayashi and T. Okubo, “Fracture Behaviour of Boride-Dispersed Composites Fabricated by Hot-Pressing Amorphous Ni60Mo30B10 Powder,” Journal of Materials Science, Vol. 33, No. 19, 1998, pp. 4727-4732. doi:10.1023/A:1004441205253
[21] L. L. Wang, B. W. Zhang, G. Yi, Y. F. Ouyang and W. Y. Hu, “Structure and Crystallization of Amorphous Fe-Mo-B Alloys Obtained by Electroless Plating,” Journal of Alloys and Compounds, Vol. 255, No. 1-2, 1997, pp. 231-235. doi:10.1016/S0925-8388(96)02843-5
[22] K.-I. Takagi, “Development and Application of High Strength Ternary Boride Base Cermets,” Journal of Solid State Chemistry, Vol. 179, No. 9, 2006, pp. 2809-2818. doi:10.1016/j.jssc.2006.01.023
[23] Y. Yamasaki, M. Nishi and K.-I. Takagi, “Development of Very High Strength Mo2NiB2 Complex Boride Base Hard Alloy,” Journal of Solid State Chemistry, Vol. 177, No. 2, 2004, pp. 551-555doi:10.1016/j.jssc.2003.03.008
[24] K.-I. Takagi and Y. Yamasaki, “Effects of Mo/B Atomic Ratio on the Mechanical Properties and Structure of Mo2NiB2 Boride Base Cermets with Cr and V Additions,” Journal of Solid State Chemistry, Vol. 154, No. 1, 2000, pp. 263-268.
[25] K.-I. Takagi, “High Tough Boride Base Cermets Produced by Reaction Sintering,” Materials Chemistry and Physics, Vol. 67, No. 1-3, 2001, pp. 214-219.
[26] X. M. Pang, Y. Zheng, S. G. Wang and Q. H. Wang, “Effect of Mn on Valence-Electron Structure and Properties of Hard Phase in Mo2FeB2-Based Cermets,” International Journal of Refractory Metals and Hard Materials, Vol. 27, No. 4, 2009, pp. 777-780. doi:10.1016/j.ijrmhm.2009.01.004
[27] Y. Shiota, Y. Miyajima, T. Fujima and K.-I. Takagi, “Effect of Double Addition of V and Cr on the Properties of Mo2NiB2 Ternary Boride-Based Cermets,” Journal of Physics: Conference Series, Vol. 176, No. 1, 2009, Article ID: 012046.
[28] B. Yuan, G.-J. Zhang, Y.-M. Kan and P.-L. Wang, “Reactive Synthesis and Mechanical Properties of Mo2NiB2 Based Hard Alloy,” International Journal of Refractory Metals and Hard Materials, Vol. 28, 2010, pp. 291-296. doi:10.1016/j.ijrmhm.2009.11.002
[29] H. Z. Yu, Y. Zheng, W. J. Liu, X. M. Pang, J. Z. Zheng and W. H. Xiong, “Effect of Mo/B Atomic Ratio on the Microstructure and Mechanical Properties of Mo2FeB2 Based Cermets,” International Journal of Refractory Metals and Hard Materials, Vol. 28, 2010, pp. 338-342. doi:10.1016/j.ijrmhm.2009.11.008
[30] H. Z. Yu, W. J. Liu and Y. Zheng, “Microstructure and Mechanical Properties of Liquid Phase Sintered Mo2FeB2 Based Cermets,” Materials and Design, Vol. 32, No. 6, 2011, pp. 3521-3525. doi:10.1016/j.matdes.2011.02.034
[31] V. Sanin, D. Andreev, D. Ikornikov and V. Yukhvid, “Cast Intermetallic Alloys by SHS Under High Gravity,” Journal Acta Physica Polonica A, Vol. 120, No. 2. 2011, pp. 331-335.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.