Modeling and Simulation of Molecular Mechanism of Action of Dietary Polyphenols on the Inhibition of Anti-Apoptotic PI3K/AKT Pathway

DOI: 10.4236/cmb.2013.33006    PDF   HTML     4,079 Downloads   7,941 Views   Citations


 In recent years, the role of dietary phenolic compounds in the regulation of cellular metabolism in normal and pathological conditions has become increasingly important in cancer research. In most cases, the molecular mechanism of action related to the anticarcinogenic effect of phenolic compounds has been studied in vitro and in animal models, but these studies are still not complete. It is precisely here where in silico approaches can be an invaluable tool for complementing in vitro and in vivo research. In this paper, we adopt a tuple space-based modeling and simulation approach, and show how it can be applied to the simulation of complex interaction patterns of intracellular signaling pathways. Specifically, we are working to explore and to understand the molecular mechanism of action of dietary phenolic compounds on the inhibition of the PI3K/AKT anti-apoptotic pathway. As a first approximation, using the tuple spaces- based in silico approach, we model and simulate the anti-apoptotic PI3K/AKT pathway in the absence and presence of phenolic compounds, in order to determine the effectiveness of our platform, to employ it in future prediction of experimentally non visualized interactions between the pathway components and phenolic compounds.

Share and Cite:

González-Pérez, P. and Cárdenas-García, M. (2013) Modeling and Simulation of Molecular Mechanism of Action of Dietary Polyphenols on the Inhibition of Anti-Apoptotic PI3K/AKT Pathway. Computational Molecular Bioscience, 3, 39-52. doi: 10.4236/cmb.2013.33006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. Cheynier, “Polyphenols in Foods Are More Complex Than Often Thought,” The American Journal of Clinical Nutrition, Vol. 81, No. 1, 2005, pp. 223S-229S.
[2] A. Scalbert, A. C.Manach, C. Morand, C. Remesy and L. Jimenez, “Dietary Polyphenols and the Prevention of Diseases,” Critical Reviews in Food Science and Nutrition, Vol. 45, No. 4, 2005, pp. 287-306. doi:10.1080/1040869059096
[3] I. Naasani, F. Oh-Hashi, T. Oh-Hara, W.Y. Feng, J. Johnston, K. Chan and T. Tsuruo, “Blocking Telomerase by Dietary Polyphenols Is a Major Mechanism for Limiting the Growth of Human Cancer Cells in Vitro and in Vivo,” Cancer Research, Vol. 63, No. 4, 2003, pp. 824-830.
[4] T. Hussain, S. Gupta, V. M. Adhami and H. Mukhtar, “Green Tea Constituent Epigallocatechin-3-Gallate Selectively Inhibits COX-2 without Affecting COX-1 Expression in Human Prostate Carcinoma Cells,” International Journal of Cancer, Vol. 113, No. 4, 2005, pp. 660-669. doi:10.1002/ijc.20629
[5] K.A. O’Leary, S. De Pascual-Tereasa, P. W. Needs, Y. P. Bao, N. M. O’Brien and G. Williamson, “Effect of Flavonoids and Vitamin E on Cyclooxygenase-2 (COX-2) Transcription,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Vol. 551, No. 1-2, 2004, pp. 245-254. doi:10.1016/j.mrfmmm.2004.01.015
[6] C. D. Sadik, H. Sies and T. Schewe, “Inhibition of 15-Lipoxygenases by Flavonoids: Structure-Activity Relations and Mode of Action,” Biochemical Pharmacology, Vol. 65, No. 5, 2003, pp. 773-781. doi:10.1016/S0006-2952(02)01621-0
[7] T. Schewe, C. Sadik, L. O. Klotz, T. Yoshimoto, H. Kuhn and H. Sies, “Polyphenols of Cocoa: Inhibition of Mammalian 15-Lipoxygenase,” Biological Chemistry, Vol. 382, No. 12, 2001, pp. 1687-1696. doi:10.1515/BC.2001.204
[8] S. Wiseman, T. Mulder and A. Rietveld, “Tea Flavonoids: Bioavailability in Vivo and Effects on Cell Signalling Pathways in Vitro,” Antioxidants & Redox Signaling, Vol. 3, No. 6, 2001, pp. 1009-1021. doi:10.1089/152308601317203549
[9] D. F. Birt, S. Hendrich and W. Wang, “Dietary Agents in Cancer Prevention: Flavonoids and Isoflavonoids,” Pharmacology & Therapeutics, Vol. 90, No. 2-3, 2001, pp. 157-177.
[10] P. M. Kris-Etherton and C. L. Keen, “Evidence That the Antioxidant Flavonoids in Tea and Cocoa Are Beneficial for Cardiovascular Health,” Current Opinion in Lipidology, Vol. 13, No. 1, 2002, pp. 1341-1349. doi:10.1097/00041433-200202000-00007
[11] M. Artico, R. Di Santo, R. Costi, E. Novellino, G. Greco, S. Massa, et al., “Geometrically and Conformationally Restrained Cinnamoyl Compounds as Inhibitors of HIV-1 Integrase: Synthesis, Biological Evaluation, and Molecular Modeling,” Journal of Medicinal Chemistry, Vol. 41, No. 21, 1998, pp. 3948-3960. doi:10.1021/jm9707232
[12] H. K. Biesalski, “Polyphenols and Inflammation: Basic Interactions,” Current Opinion in Clinical Nutrition & Metabolic Care, Vol. 10, No. 6, 2007, pp. 724-728. doi:10.1097/MCO.0b013e3282f0cef2
[13] I. Rahman, S. K. Biswas and P. A. Kirkham, “Regulation of Inflammation and Redox Signalling by Dietary Polyphenols,” Biochemical Pharmacology, Vol. 72, No. 11, 2006, pp. 1439-1452. doi:10.1016/j.bcp.2006.07.004
[14] C. Manach, A. Mazur and A. Scalbert, “Polyphenols and Prevention of Cardiovascular Disease,” Current Opinion in Lipidology, Vol. 16, No. 1, 2005, pp. 77-84. doi:10.1097/00041433-200502000-00013
[15] C. L. Hsu and G. C. Yen, “Phenolic Compounds: Evidence for Inhibitory Effects against Obesity and Their Underlying Molecular Signalling Mechanisms,” Molecular Nutrition & Food Research, Vol. 52, No. 1, 2008, pp. 53-61. doi:10.1002/mnfr.200700393
[16] K. M. Nicholson and N. G. Anderson, “The Protein Kinase B/Akt Signalling Pathway in Human Malignancy,” Cellular Signalling, Vol. 14, No. 5, 2002, pp. 381-395. doi:10.1016/S0898-6568(01)00271-6
[17] M. Viroli and M. Casadei, “Biochemical Tuple Spaces for Self-Organising Coordination,” In: J. Field and V. T. Vasconcelos, Eds., Coordination Languages and Models, ser. LNCS, Springer, Lisbon, 2009, pp. 143-162. doi:10.1007/978-3-642-02053-7_8
[18] A. Omicini and E. Denti, “From Tuple Spaces to Tuple Centres,” Science of Computer Programming, Vol. 41, No. 3, 2001, pp. 277-294. doi:10.1016/S0167-6423(01)00011-9
[19] A. Omicini and F. Zambonelli, “Coordination for Internet Application Development,” Autonomous Agents and Multi- Agent Systems, Vol. 2, No. 3, 1999, pp. 251-269, doi:10.1023/A:1010060322135
[20] D. Gelernter, “Generative Communication in Linda,” ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, 1985, pp. 80-112.
[21] P. P. González-Pérez, A. Omicini and M. Sbaraglia, “A Biochemically-Inspired Coordination-Based Model for Simulating Intracellular Signalling Pathways,” Journal of Simulation, Vol. 2013, No. I-II, 2013. doi:10.1057/jos.2012.28
[22] D. T. Gillespie, “Exact Stochastic Simulation of Coupled Chemical Reactions,” The Journal of Physical Chemistry, Vol. 81, No. 25, 1977, pp. 2340-2361. doi:10.1021/j100540a008
[23] O. Tokgun, H. Akca, R. Mammadov, C. Aykurt and G. Deniz, “Convolvulus galaticus, Crocus antalyensis, and Lilium candidum Extracts Show Their Antitumor Activity Through Induction of p53-Mediated Apoptosis on Human Breast Cancer Cell Line MCF-7,” Journal of Medicinal Food, Vol. 15, No. 11, 2012, pp. 1000-1005. doi:10.1089/jmf.2012.0050
[24] L. S. Po, T. T. Wang, Z. Y. Chen and L. K. Leung, “Genistein-Induced Apoptosis in MCF-7 Cells Involves Changes in Bak and Bcl-x without Evidence of Anti-Oestrogenic Effects,” British Journal of Nutrition, Vol. 88, No. 5, 2002 pp. 463-469. doi:10.1079/BJN2002693
[25] Y. J. Surh, “Cancer Chemoprevention with Dietary Phytochemicals,” Nature Reviews Cancer, Vol. 3, No. 10, 2003 pp. 768-780. doi:10.1038/nrc1189
[26] D. L. Smith, L. K. Nolden, G. B. Mills and Y. Lu, “Chemo- and Radiosensitization Through Inhibition of PI3K/Akt Signaling,” In: D. A. Gewirtz, S. E. Holt and S. Grant, Eds., Apoptosis, Senescence and Cancer, Humana Press, New Jersey, 2007, pp. 313-334. doi:10.1007/978-1-59745-221-2_17
[27] W. Vanden Berghe, “Epigenetic Impact of Dietary Polyphenols in Cancer Chemoprevention: Lifelong Remodeling of Our Epigenomes,” Pharmacological Research, Vol. 65, No. 6, 2012, pp. 565-576. doi:10.1016/j.phrs.2012.03.007
[28] G. Kroemer, L. Galluzzi and C. Brenner, “Mitochondrial Membrane Permeabilization in Cell Death,” Physiological Reviews, Vol. 87, No. 1, 2007, pp. 99-163. doi:10.1152/physrev.00013.2006
[29] J. Hoshino, E. J. Park, T. P. Kondratyuk, L. Marler, J. M. Pezzuto, R. B. van Breemen, S. Mo, Y. Li and M. Cushman, “Selective Synthesis and Biological Evaluation of Sulfate-Conjugated Resveratrol Metabolites,” Journal of Medicinal Chemistry, Vol. 53, No. 13, 2010, pp. 5033- 5043. doi:10.1021/jm100274c
[30] G. Lauritzen, C. M. Stock, J. Lemaire, S. F. Lund, M. F. Jensen, B. Damsgaard, K. S. Petersen, M. Wiwel, L. R?n-nov-Jessen, A. Schwab and S. F. Pedersen, “The Na+/H+ Exchanger NHE1, But Not the Na+, HCO3(-) Cotransporter NBCn1, Regulates Motility of MCF7 Breast Cancer Cells Expressing Constitutively Active ErbB2,” Cancer Letters, Vol. 317, No. 2, 2012, pp. 172-183.
[31] K. Yu, L. Toral-Barza, C. Shi, W. G. Zhang and A. Zask, “Response and Determinants of Cancer Cell Susceptibility to PI3K Inhibitors,” Cancer Biology & Therapy, Vol. 7, No. 2, 2008, pp. 307-315. doi:10.4161/cbt.7.2.5334
[32] G. Gao, C. Chen, Y. Yang, H. Yang, J. Wang, Y. Zheng, Q. Huang and X. Hu, “Targeted Detecting HER2 Expression with Recombinant Anti HER2 ScFv-GFP Fusion Antibody,” Sheng Wu Gong Cheng Xue Bao, Vol. 28, No. 8, 2012, pp. 1002-1014.
[33] T. Wang, M. Zhang, Z. Ma, K. Guo, V. Tergaonkar, Q. Zeng and W. Hong, “A Role of Rab7 in Stabilizing EGFR-Her2 and in Sustaining Akt Survival Signal,” Journal of Cellular Physiology, Vol. 2227, No. 6, 2012, pp. 2788-2797. doi:10.1002/jcp.23023
[34] C. Mitchell, M. A. Park, G. Zhang, A. Yacoub, D. T. Curiel, P. B. Fisher, J. D. Roberts, S. Grant, P. Dent and C. Mol, “Extrinsic Pathway- and Cathepsin-Dependent Induction of Mitochondrial Dysfunction Are Essential for Synergistic Flavopiridol and Vorinostat Lethality in Breast Cancer Cells,” Cancer Therapy Journal, Vol. 12, No. 1, 2007, pp. 3101-3112. doi:10.1158/1535-7163.MCT-07-0561
[35] X. He, Y. Wang, J. Zhu, M. Orloff and C. Eng, “Resveratrol Enhances the Anti-Tumor Activity of the mTOR Inhibitor Rapamycin in Multiple Breast Cancer Cell Lines Mainly by Suppressing Rapamycin-Induced AKT Signaling,” Cancer Letters, Vol. 301, No. 2, 2011, pp. 168- 176. doi:10.1016/j.canlet.2010.11.012
[36] A. D. Balgi, G. H. Diering, E. Donohue, K. K. Lam, B. D. Fonseca, C. Zimmerman, M. Numata and M. Roberge, “Regulation of mTORC1 Signaling by pH,” Plos One, Vol. 6, No. 6, 2011, e21549.
[37] C. Garofalo, D. Sisci and E. Surmacz, “Leptin Interferes with the Effects of the Antiestrogen ICI 182,780 in MCF-7 Breast Cancer Cells,” Clinical Cancer Research, Vol. 10, No. 19, 2004, pp. 6466-6475. doi:10.1158/1078-0432.CCR-04-0203
[38] W. Wang, E. R. Rayburn, S. E. Velu, D. H. Nadkarni, S. Murugesan and R. Zhang, “In Vitro and in Vivo Anticancer Activity of Novel Synthetic Makaluvamine Analogues,” Clinical Cancer Research, Vol. 15, No. 10, 2009, pp. 3511-3518. doi:10.1158/1078-0432.CCR-08-2689
[39] T. Sakamoto, H. Horiguchi, E. Oguma and F. Kayama, “Effects of Diverse Dietary Phytoestrogens on Cell Growth, Cell Cycle and Apoptosis in Estrogen-Receptor- Positive Breast Cancer Cells,” The Journal of Nutritional Biochemistry, Vol. 21, No. 9, 2012, pp. 856-864. doi:10.1016/j.jnutbio.2009.06.010
[40] L.Q Li, X. L. Li, L. Wang, W. J. Du, R. Guo, H. H. Liang, X. Liu, D. S. Liang, Y. J. Lu, H. L. Shan and H. C. Jiang, “Matrine Inhibits Breast Cancer Growth via miR-21/ PTEN/Akt Pathway in MCF-7 Cells,” Cellular Physiology and Biochemistry, Vol. 30, No. 3, 2012, pp. 631-641. doi:10.1159/000341444
[41] M. S. Sheikh, M. Garcia, Q. Zhan, Y. Liu and A. J. Fornace Jr., “Cell Cycle-Independent Regulation of p21-Waf1/Cip1 and Retinoblastoma Protein during Okadaic Acid-Induced Apoptosis Is Coupled with Induction of Bax Protein in Human Breast Carcinoma Cells,” Cell Growth & Differentiation, Vol. 7, No. 12, 1996, pp. 1599- 1607.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.