The Aryl Hydrocarbon Receptor: A Target for Breast Cancer Therapy


The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a battery of genes in response to exposure to a broad class of environmental poly aromatic hydrocarbons (PAH). AhR is historically characterized for its role in mediating the toxicity and adaptive responses to these chemicals, however mounting evidence has established a role for it in ligand-independent physiological processes and pathological conditions, including cancer. The AhR is overexpressed and constitutively activated in advanced breast cancer cases and was shown to drive the progression of breast cancer. In this article we will review the current state of knowledge on the possible role of AhR in breast cancer and how it will be exploited in targeting AhR for breast cancer therapy.

Share and Cite:

J. Powell, G. Goode and S. Eltom, "The Aryl Hydrocarbon Receptor: A Target for Breast Cancer Therapy," Journal of Cancer Therapy, Vol. 4 No. 7, 2013, pp. 1177-1186. doi: 10.4236/jct.2013.47137.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. DeSantis, R. Siegel, P. Bandi and A. Jemal, “Breast Cancer Statistics, 2011,” CA: A Cancer Journal for Clinicians, Vol. 61, No. 6, 2011, pp. 409-418. doi:10.3322/caac.20134
[2] R. Alteri, P. Bandi, L. Brinton, C. Casares, V. Cokkinides, T. Gansler, et al., “Breast Cancer Facts & Figures 2011-2012,” American Cancer Society, Inc., Atlanta, 2011.
[3] B. D. Robinson, G. L. Sica, Y. F. Liu, T. E. Rohan, F. B. Gertler, J. S. Condeelis, et al., “Tumor Microenvironment of Metastasis in Human Breast Carcinoma: A Potential Prognostic Marker Linked to Hematogenous Dissemination,” Clinical Cancer Research, Vol. 15, No. 7, 2009, pp. 2433-2441. doi:10.1158/1078-0432.CCR-08-2179
[4] M. V. Blagosklonny, “Why Therapeutic Response May Not Prolong the Life of a Cancer Patient: Selection for Oncogenic Resistance,” Cell Cycle, Vol. 4, No. 12, 2005, pp. 1693-1698. doi:10. 4161/cc.4.12. 2259
[5] M. Parton, M. Dowsett and I. Smith, “Studies of Apoptosis in Breast Cancer,” British Medical Journal, Vol. 322, No. 7301, 2001, pp. 1528-1532. doi:10.1136/bmj.322.7301.1528
[6] K. M. Burbach, A. Poland and C. A. Bradfield, “Cloning of the Ah-Receptor cDNA Reveals a Distinctive LigandActivated Transcription Factor,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, No. 17, 1992, pp. 8185-8189. doi:10.1073/pnas.89.17.8185
[7] J. C. Rowlands and J. A. Gustafsson, “Aryl Hydrocarbon Receptor-Mediated Signal Transduction,” Critical Reviews in Toxicology, Vol. 27, No. 2, 1997, pp. 109-134. doi:10.3109/10408449709021615
[8] A. Poland and J. C. Knutson, “2,3,7,8-Tetra Chlorodibenzo-P-Dioxin and Related Halogenated Aromatic Hydrocarbons: Examination of the Mechanism of Toxicity,” Annual Review of Pharmacology and Toxicology, Vol. 22, 1982, pp. 517-554. doi:10.1146/
[9] R. Barouki, X. Coumoul and P. M. Fernandez-Salguero, “The Aryl Hydrocarbon Receptor, More than a Xenobiotic-Interacting Protein,” FEBS Letters, Vol. 581, No. 19, 2007, pp. 3608-3615. doi:10.1016/j. febslet. 2007.03.046
[10] D. H. Sherr, “Another Important Biological Function for the Aryl Hydrocarbon Receptor,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 31, No. 6, 2011, pp. 1247-1248. doi:10.1161/ATVBAHA. 111.227553
[11] M. M. Richert, K. L. Schwertfeger, J. W. Ryder and S. M. Anderson, “An Atlas of Mouse Mammary Gland Development,” Journal of Mammary Gland Biology and Neoplasia, Vol. 5, No. 2, 2000, pp. 227-241. doi:10.1023/A:1026499523505
[12] B. D. Abbott, L. S. Birnbaum and G. H. Perdew, “Developmental Expression of Two Members of a New Class of Transcription Factors: I. Expression of Aryl Hydrocarbon Receptor in the C57BL/6N Mouse Embryo,” Developmental Dynamics, Vol. 204, No. 2, 1995, pp. 133-143. doi:10.1002/aja.1002040204
[13] L. J. Hushka, J. S. Williams and W. F. Greenlee, “Characterization of 2,3,7,8-Tetrachlorodibenzofuran-Dependent Suppression and AH Receptor Pathway Gene Expression in the Developing Mouse Mammary Gland,” Toxicology and Applied Pharmacology, Vol. 152, No. 1, 1998, pp. 200-210. doi:10.1006/taap.1998.8508
[14] B. J. Lew, L. L. Collins, M. A. O’Reilly and B. P. Lawrence, “Activation of the Aryl Hydrocarbon Receptor during Different Critical Windows in Pregnancy Alters Mammary Epithelial Cell Proliferation and Differentiation,” Toxicological Sciences, Vol. 111, No. 1, 2009, pp. 151-162. doi:10.1093/toxsci/kfp125
[15] S. E. Fenton, J. T. Hamm, L. S. Birnbaum and G. L. Youngblood, “Persistent Abnormalities in the Rat Mammary Gland Following Gestational and Lactational Exposure to 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (TCDD),” Toxicological Sciences, Vol. 67, No. 1, 2002, pp. 63-74. doi:10.1093/toxsci/67.1.63
[16] B. C. Lewis, S. Hudgins, A. Lewis, K. Schorr, R. Sommer, R. E. Peterson, et al., “In Utero and Lactational Treatment with 2,3,7,8-Tetrachlorodibenzo-P-Dioxin Impairs Mammary Gland Differentiation but Does Not Block the Response to Exogenous Estrogen in the Postpubertal Female Rat,” Toxicological Sciences, Vol. 62, No. 1, 2001, pp. 46-53. doi:10.1093/toxsci/62.1.46
[17] B. A. Vorderstrasse, S. E. Fenton, A. A. Bohn, J. A. Cundiff and B. P. Lawrence, “A Novel Effect of Dioxin: Exposure during Pregnancy Severely Impairs Mammary Gland Differentiation,” Toxicological Sciences, Vol. 78, No. 2, 2004, pp. 248-257. doi:10.1093/toxsci/kfh062
[18] T. Wang, H. M. Gavin, V. M. Arlt, B. P. Lawrence, S. E. Fenton, D. Medina, et al., “Aryl Hydrocarbon Receptor Activation during Pregnancy, and in Adult Nulliparous Mice, Delays the Subsequent Development of DMBAInduced Mammary Tumors,” International Journal of Cancer, Vol. 128, No. 7, 2011, pp. 1509-1523. doi:10.1002/ijc.25493
[19] N. M. Brown, P. A. Manzolillo, J. X. Zhang, J. Wang and C. A. Lamartiniere, “Prenatal TCDD and Predisposition to Mammary Cancer in the Rat,” Carcinogenesis, Vol. 19, No. 9, 1998, pp. 1623-1629. doi:10.1093/carcin/19.9.1623
[20] I. A. Dialyna, D. A. Arvanitis and D. A. Spandidos, “Genetic Polymorphisms and Transcriptional Pattern Analysis of CYP1A1, AhR, GSTM1, GSTP1 and GSTT1 Genes in Breast Cancer,” International Journal of Molecular Medicine, Vol. 8, No. 1, 2001, pp. 79-87.
[21] A. F. Trombino, R. I. Near, R. A. Matulka, S. Yang, L. J. Hafer, P. A. Toselli, et al., “Expression of the Aryl Hydrocarbon Receptor/Transcription Factor (AhR) and AhRRegulated CYP1 Gene Transcripts in a Rat Model of Mammary Tumorigenesis,” Breast Cancer Research and Treatment, Vol. 63, No. 2, 2000, pp. 117-131. doi:10.1023/A:1006443104670
[22] S. E. Eltom, A. Gasmelseed and D. Saoudi-Guentri, “The Aryl Hydrocarbon Receptor Is Over-Expressed and Constitutively Activated in Advanced Breast Carcinoma,” Proceedings of the American Association for Cancer Research, 2006, p. 47. doi:10.1002/jcb.21630
[23] X. Yang, S. Solomon, L. R. Fraser, A. F. Trombino, D. Liu, G. E. Sonenshein, et al., “Constitutive Regulation of CYP1B1 by the Aryl Hydrocarbon Receptor (AhR) in Pre-Malignant and Malignant Mammary Tissue,” Journal of Cellular Biochemistry, Vol. 104, No. 2, 2008, pp. 402-417. doi:10.2174/156800911795655967
[24] J. Brooks and S. E. Eltom, “Malignant Transformation of Mammary Epithelial Cells by Ectopic Overexpression of the Aryl Hydrocarbon Receptor,” Current Cancer Drug Targets, Vol. 11, No. 5, 2011, pp. 654-669.
[25] G. Goode, B. R. Ballard, H. C. Manning, M. L. Freeman, Y. Kang and S. E. Eltom, “Knockdown of Aberrantly Upregulated Aryl Hydrocarbon Receptor Reduces Tumor Growth and Metastasis of MDA-MB-231 Human Breast Cancer Cell Line,” International Journal of Cancer, 2013. doi:10.1002/ijc.28297
[26] T. Ikuta, T. Tachibana, J. Watanabe, M. Yoshida, Y. Yoneda and K. Kawajiri, “Nucleocytoplasmic Shuttling of the Aryl Hydrocarbon Receptor,” Journal of Biochemistry, Vol. 127, No. 3, 2000, pp. 503-509. doi:10.1093/oxfordjournals.jbchem.a022633
[27] P. Lin, H. Chang, W. L. Ho, M. H. Wu and J. M. Su, “Association of Aryl Hydrocarbon Receptor and Cytochrome P4501B1 Expressions in Human Non-Small Cell Lung Cancers,” Lung Cancer, Vol. 42, No. 3, 2003, pp. 255-261. doi:10.1016/S0169-5002(03)00359-3
[28] C. Tran, O. Richmond, L. Aaron and J. B. Powell, “Inhibition of Constitutive Aryl Hydrocarbon Receptor (AhR) Signaling Attenuates Androgen Independent Signaling and Growth in (C4-2) Prostate Cancer Cells,” Biochemical Pharmacology, Vol. 85, No. 6, 2013, pp. 753-762. doi:10.1016/j.bcp.2012.12.010
[29] C. Y. Chang and A. Puga, “Constitutive Activation of the Aromatic Hydrocarbon Receptor,” Molecular and Cellular Biology, Vol. 18, No. 1, 1998, pp. 525-535.
[30] J. T. Chang, H. Chang, P. H. Chen, S. L. Lin and P. Lin, “Requirement of Aryl Hydrocarbon Receptor Overexpression for CYP1B1 Up-Regulation and Cell Growth in Human Lung Adenocarcinomas,” Clinical Cancer Research, Vol. 13, No. 1, 2007, pp. 38-45. doi:10.1158/1078-0432.CCR-06-1166
[31] C. M. Sadek and B. L. Allen-Hoffmann, “SuspensionMediated Induction of Hepa 1c1c7 Cyp1a-1 Expression Is Dependent on the Ah Receptor Signal Transduction Pathway,” Journal of Biological Chemistry, Vol. 269, No. 50, 1994, pp. 31505-31509.
[32] Y. C. Cho, W. Zheng and C. R. Jefcoate, “Disruption of Cell-Cell Contact Maximally but Transiently Activates AhR-Mediated Transcription in 10T1/2 Fibroblasts,” Toxicology and Applied Pharmacology, Vol. 199, No. 3, 2004, pp. 220-238. doi:10.1016/j.taap.2003.12.025
[33] Y. R. Dale and S. E. Eltom, “Calpain Mediates the Dioxin-Induced Activation and Down-Regulation of the Aryl Hydrocarbon Receptor,” Molecular Pharmacology, Vol. 70, No. 5, 2006, pp. 1481-1487. doi:10.1124/mol.106.027474
[34] Y. Dale and S. E. Eltom, “The Induction of CYP1A1 by Oltipraz Is Mediated through Calcium-Dependent-Calpain,” Toxicology Letters, Vol. 166, No. 2, 2006, pp. 150-159. doi:10.1016/j.toxlet. 2006.06.645
[35] P. Monteiro, D. Gilot, E. Le Ferrec, C. Rauch, D. Lagadic-Gossmann and O. Fardel, “Dioxin-Mediated Up-Regulation of Aryl Hydrocarbon Receptor Target Genes Is Dependent on the Calcium/Calmodulin/ CaMKIalpha Pathway,” Molecular Pharmacology, Vol. 73, No. 3, 2008, pp. 769-777. doi:10.1124/mol. 107.043125
[36] J. C. Schroeder, B. C. Dinatale, I. A. Murray, C. A. Flaveny, Q. Liu, E. M. Laurenzana, et al., “The Uremic Toxin 3-Indoxyl Sulfate Is a Potent Endogenous Agonist for the Human Aryl Hydrocarbon Receptor,” Biochemistry, Vol. 49, No. 2, 2010, pp. 393-400. doi:10.1021/bi901786x
[37] B. C. DiNatale, I. A. Murray, J. C. Schroeder, C. A. Flaveny, T. S. Lahoti, E. M. Laurenzana, et al., “Kynurenic Acid Is a Potent Endogenous Aryl Hydrocarbon Receptor Ligand that Synergistically Induces Interleukin-6 in the Presence of Inflammatory Signaling,” Toxicological Sciences, Vol. 115, No. 1, 2010, pp. 89-97. doi:10.1093/toxsci/kfq024
[38] J. K. Hockings, P. A. Thorne, M. Q. Kemp, S. S. Morgan, O. Selmin and D. F. Romagnolo, “The Ligand Status of the Aromatic Hydrocarbon Receptor Modulates Transcriptional Activation of BRCA-1 Promoter by Estrogen,” Cancer Research, Vol. 66, No. 4, 2006, pp. 2224-2232. doi:10.1158/0008-5472.CAN-05-1619
[39] B. D. Jeffy, E. U. Schultz, O. Selmin, J. M. Gudas, G. T. Bowden and D. Romagnolo, “Inhibition of BRCA-1 Expression by Benzo[a]pyrene and Its Diol Epoxide,” Molecular Carcinogenesis, Vol. 26, No. 2, 1999, pp. 100-118. doi:10.1002/(SICI)1098-2744(199910)26:2<100::AID-MC5>3.0.CO;2-1
[40] C. Kohle, I. Hassepass, B. S. Bock-Hennig, K. Walter Bock, L. Poellinger and J. McGuire, “Conditional Expression of a Constitutively Active Aryl Hydrocarbon Receptor in MCF-7 Human Breast Cancer Cells,” Archives of Biochemistry and Biophysics, Vol. 402, No. 2, 2002, pp. 172-179. doi:10.1016/S0003-9861(02)00076-0
[41] I. Chen, T. Hsieh, T. Thomas, S. Safe, I. Chen, T. Hsieh, et al., “Identification of Estrogen-Induced Genes Downregulated by AhR Agonists in MCF-7 Breast Cancer Cells Using Suppression Subtractive Hybridization,” Gene, Vol. 262, No. 1-2, 2001, pp. 207-214. doi:10.1016/S0378-1119(00)00530-8
[42] M. Wormke, M. Stoner, B. Saville, K. Walker, M. Abdelrahim, R. Burghardt, et al., “The Aryl Hydrocarbon Receptor Mediates Degradation of Estrogen Receptor Alpha through Activation of Proteasomes,” Molecular Cellular Biology, Vol. 23, No. 6, 2003, pp. 1843-1855. doi:10.1128/MCB.23.6.1843-1855.2003
[43] I. Kharat and F. Saatcioglu, “Antiestrogenic Effects of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Are Mediated by Direct Transcriptional Interference with the Liganded Estrogen Receptor. Cross-Talk between Aryl Hydrocarbonand Estrogen-Mediated Signaling,” The Journal of Biological Chemistry, Vol. 271, No. 18, 1996, pp. 10533-10537. doi:10.1074/jbc.271.18.10533
[44] C. L. Chaffin, R. E. Peterson and R. J. Hutz, “In Utero and Lactational Exposure of Female Holtzman Rats to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin: Modulation of the Estrogen Signal,” Biology of Reproduction, Vol. 55, No. 1, 1996, pp. 62-67. doi:10.1095/biolreprod55.1.62
[45] D. C. Spink, D. W. Lincoln 2nd, H. W. Dickerman and J. F. Gierthy, “2,3,7,8-Tetra Chlorodibenzo-p-Dioxin Causes an Extensive Alteration of 17 Beta-Estradiol Metabolism in MCF-7 Breast Tumor Cells,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 87, No. 17, 1990, pp. 6917-6921. doi:10.1073/pnas.87.17.6917
[46] D. C. Spink, H. P. Eugster, D. W. Lincoln 2nd, J. D. Schuetz, E. G. Schuetz, J. A. Johnson, et al., “17 Beta-Estradiol Hydroxylation Catalyzed by Human Cytochrome P450 1A1: A Comparison of the Activities Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in MCF-7 Cells with Those from Heterologous Expression of the cDNA,” Archives of Biochemistry and Biophysics, Vol. 293, No. 2, 1992, pp. 342-348. doi:10.1016/0003-9861(92)90404-K
[47] K. Belguise, S. Guo, S. Yang, A. E. Rogers, D. C. Seldin, D. H. Sherr, et al., “Green Tea Polyphenols Reverse Cooperation between c-Rel and CK2 that Induces the Aryl Hydrocarbon Receptor, Slug, and an Invasive Phenotype,” Cancer Research, Vol. 67, No. 24, 2007, pp. 11742-11750. doi:10.1158/0008-5472.CAN-07-2730
[48] C. A. Lamartiniere, J. B. Moore, N. M. Brown, R. Thompson, M. J. Hardin and S. Barnes, “Genistein Suppresses Mammary Cancer in Rats,” Carcinogenesis, Vol. 16, No. 11, 1995, pp. 2833-2840. doi:10.1093/carcin/16.11.2833
[49] W. S. Lau, W. F. Chen, R. Y. Chan, D. A. Guo and M. S. Wong, “Mitogen-Activated Protein Kinase (MAPK) Pathway Mediates the Oestrogen-Like Activities of Ginsenoside Rg1 in Human Breast Cancer (MCF-7) Cells,” British Journal of Pharmacology, Vol. 156, No. 7, 2009, pp. 1136-1146. doi:10.1111/j.1476-5381.2009.00123.x
[50] A. Kasai, N. Hiramatsu, K. Hayakawa, J. Yao and M. Kitamura, “Blockade of the Dioxin Pathway by Herbal Medicine Formula Bupleuri Minor: Identification of Active Entities for Suppression of AhR Activation,” Biological and Pharmaceutical Bulletin, Vol. 31, No. 5, 2008, pp. 838-846. doi:10.1248/bpb.31.838
[51] R. F. Casper, M. Quesne, I. M. Rogers, T. Shirota, A. Jolivet, E. Milgrom, et al., “Resveratrol Has Antagonist Activity on the Aryl Hydrocarbon Receptor: Implications for Prevention of Dioxin Toxicity,” Molecular Pharmacology, Vol. 56, No. 4, 1999, pp. 784-790.
[52] P. de Medina, R. Casper, J. F. Savouret and M. Poirot, “Synthesis and Biological Properties of New Stilbene Derivatives of Resveratrol as New Selective Aryl Hydrocarbon Modulators,” Journal of Medicinal Chemistry, Vol. 48, No. 1, 2005, pp. 287-291. doi:10.1021/jm0498194
[53] K. K. Mak, A. T. Wu, W. H. Lee, T. C. Chang, J. F. Chiou, L. S. Wang, et al., “Pterostilbene, a Bioactive Component of Blueberries, Suppresses the Generation of Breast Cancer Stem Cells within Tumor Microenvironment and Metastasis via Modulating NF-kappaB/microRNA 448 Circuit,” Molecular Nutrition & Food Research, Vol. 57, No. 7, 2013, pp. 1123-1134. doi:10.1002/mnfr.201200549
[54] S. M. Oh and K. H. Chung, “Estrogenic Activities of Ginkgo biloba Extracts,” Life Sciences, Vol. 74, No. 11, 2004, pp. 1325-1335. doi:10.1016/j.lfs.2003.06.045
[55] S. M. Oh and K. H. Chung, “Antiestrogenic Activities of Ginkgo biloba Extracts,” The Journal of Steroid Biochemistry and Molecular Biology, Vol. 100, No. 4-5, 2006, pp. 167-176. doi:10.1016/j. jsbmb.2006.04.007
[56] A. Kollara and T. J. Brown, “Modulation of Aryl Hydrocarbon Receptor Activity by Four and a Half LIM Domain 2,” The International Journal of Biochemistry & Cell Biology, Vol. 41, No. 5, 2009, pp. 1182-1188. doi:10.1016/j.biocel.2008.10.019
[57] F. Wang, W. Wang and S. Safe, “Regulation of Constitutive Gene Expression through Interactions of Sp1 Protein with the Nuclear Aryl Hydrocarbon Receptor Complex,” Biochemistry, Vol. 38, No. 35, 1999, pp. 11490-11500. doi:10.1021/bi982578f
[58] B. J. Lew, R. Manickam and B. P. Lawrence, “Activation of the Aryl Hydrocarbon Receptor during Pregnancy in the Mouse Alters Mammary Development through Direct Effects on Stromal and Epithelial Tissues,” Biology of Reproduction, Vol. 84, No. 6, 2011, pp. 1094-1102. doi:10.1095/biolreprod.110.087544
[59] G. Elizondo, P. Fernandez-Salguero, M. S. Sheikh, G. Y. Kim, A. J. Fornace, K. S. Lee, et al., “Altered Cell Cycle Control at the G(2)/M Phases in Aryl Hydrocarbon Receptor-Null Embryo Fibroblast,” Molecular Pharmacology, Vol. 57, No. 5, 2000, pp. 1056-1063.
[60] Q. Ma and J. P. Whitlock Jr., “The Aromatic Hydrocarbon Receptor Modulates the Hepa 1c1c7 Cell Cycle and Differentiated State Independently of Dioxin,” Molecular and Cellular Biology, Vol. 16, No. 5, 1996, pp. 2144-2150.
[61] S. Shimba, K. Komiyama, I. Moro and M. Tezuka, “Overexpression of the Aryl Hydrocarbon Receptor (AhR) Accelerates the Cell Proliferation of A549 Cells,” The Journal of Biochemistry, Vol. 132, No. 5, 2002, pp. 795-802. doi:10.1093/oxfordjournals.jbchem.a003289
[62] X. Chang, Y. Fan, S. Karyala, S. Schwemberger, C. R. Tomlinson, M. A. Sartor, et al., “Ligand-Independent Regulation of Transforming Growth Factor Beta1 Expression and Cell Cycle Progression by the Aryl Hydrocarbon Receptor,” Molecular and Cellular Biology, Vol. 27, No. 17, 2007, pp. 6127-6139. doi:10.1128/MCB.00323-07
[63] T. Ikuta and K. Kawajiri, “Zinc Finger Transcription Factor Slug Is a Novel Target Gene of Aryl Hydrocarbon Receptor,” Experimental Cell Research, Vol. 312, No. 18, 2006, pp. 3585-3594. doi:10.1016/j.yexcr.2006.08.002
[64] T. Niermann, S. Schmutz, P. Erne and T. Resink, “Aryl Hydrocarbon Receptor Ligands Repress T-Cadherin Expression in Vascular Smooth Muscle Cells,” Biochemical and Biophysical Research Communications, Vol. 300, No. 4, 2003, pp. 943-949. doi:10.1016/S0006-291X(02)02970-4
[65] J. M. Carvajal-Gonzalez, S. Mulero-Navarro, A. C. Roman, V. Sauzeau, J. M. Merino, X. R. Bustelo, et al., “The Dioxin Receptor Regulates the Constitutive Expression of the Vav3 Proto-Oncogene and Modulates Cell Shape and Adhesion,” Molecular Biology of Cell, Vol. 20, No. 6, 2009, pp. 1715-1727. doi:10.1091/mbc.E08-05-0451
[66] M. Haque, J. Francis and I. Sehgal, “Aryl Hydrocarbon Exposure Induces Expression of MMP-9 in Human Prostate Cancer Cell Lines,” Cancer Letters, Vol. 225, No. 1, 2005, pp. 159-166. doi:10.1016/j.canlet.2004.11.043
[67] K. A. Murphy, C. M. Villano, R. Dorn and L. A. White, “Interaction between the Aryl Hydrocarbon Receptor and Retinoic Acid Pathways Increases Matrix Metalloproteinase-1 Expression in Keratinocytes,” The Journal of Biological Chemistry, Vol. 279, No. 24, 2004, pp. 25284-25293. doi:10.1074/jbc.M402168200
[68] D. W. Kim, L. Gazourian, S. A. Quadri, R. RomieuMourez, D. H. Sherr and G. E. Sonenshein, “The RelA NF-kappaB Subunit and the Aryl Hydrocarbon Receptor (AhR) Cooperate to Transactivate the c-myc Promoter in Mammary Cells,” Oncogene, Vol. 19, No. 48, 2000, pp. 5498-5506. doi:10. 1038/sj.onc.1203945
[69] X. F. Yin, J. Chen, W. Mao, Y. H. Wang and M. H. Chen, “A Selective Aryl Hydrocarbon Receptor Modulator 3,3’-Diindolylmethane Inhibits Gastric Cancer Cell Growth,” Journal of Experimental & Clinical Cancer Research, Vol. 31, 2012, p. 46. doi:10.1186/1756-9966-31-46

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.