Nanostructured hybrid materials for bone-tooth unit regeneration
Sabine Kuchler-Bopp, Thibault Bécavin, Tunay Kökten, Florence Fioretti, Etienne Deveaux, Nadia Benkirane-Jessel, Laetitia Keller
Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine, Faculté de Médecine, Strasbourg, France.
Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine, Faculté de Médecine, Strasbourg, France &Université Lille Nord de France, Faculté de Chirurgie Dentaire, Lille, France.
Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine, Faculté de Médecine, Strasbourg, France; &Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 Place de l’H?pital, Strasbourg, France.
Université Lille Nord de France, Faculté de Chirurgie Dentaire, Lille, France.
DOI: 10.4236/ojrm.2013.23008   PDF    HTML     3,538 Downloads   6,663 Views   Citations

Abstract


As a part of regenerative medicine, biomaterials are largely used in this field of nanotechnology and tissue engineering research. We have recently developed a new scaffold using electrospun nanofibers of Poly (ε-caprolactone), PCL which is able to mimic the collagen extracellular matrix of cells. The aim of this study was to engineer a biological and implantable structure leading the regeneration of the tooth-bone unit. For this aim, we have cultured mouse osteoblasts embedded in a collagen gel on the nanofibrous membrane and coupled this structure with an embryonic dental germ before implantation. To follow bone and tooth regeneration, we have performed RT-PCR, histology and immunofluorescence analysis. We showed here that this leaving implantable structure represents an accurate strategy for bone-tooth unit regeneration. We report here the first demonstration of bone-tooth unit regeneration by using a strategy based on a synthetic nanostructured membrane. This electrospun membrane is manufactured by using an FDA approved polymer, PCL and functionalized with osteoblasts before incorporation of the tooth germs at ED14 (the first lower molars) to generate bone-tooth unit in vivo after implantation in mice. Our technology represents an excellent platform on which other sophisticated products could be based.



Share and Cite:

Kuchler-Bopp, S. , Bécavin, T. , Kökten, T. , Fioretti, F. , Deveaux, E. , Benkirane-Jessel, N. and Keller, L. (2013) Nanostructured hybrid materials for bone-tooth unit regeneration. Open Journal of Regenerative Medicine, 2, 47-52. doi: 10.4236/ojrm.2013.23008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Oberpenning, F., Meng, J., Yoo, J.J. and Atala, A. (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nature Biotechnology, 17, 149-155. doi:10.1038/6146
[2] Park, K.I., Teng, Y.D. and Snyder, E.Y. (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnology, 20, 1111-1117. doi:10.1038/nbt751
[3] Kenawy, el R., Layman, J.M., Watkins, J.R., Bowlin, G.L., Matthews, J.A., Simpson, D.G. and Wnek, G.E. (2003). Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials, 24, 907-913. doi:10.1155/2011/201834
[4] Nait Lechguer, A., Couble, M.L., Labert, N., Kuchler-Bopp, S., Keller, L., Magloire, H., Bleicher, F. and Lesot, H. (2011) Cell differentiation and matrix organization in engineered teeth. Journal of Dental Research, 90, 583-589. doi:10.1177/0022034510391796
[5] Nait Lechguer, A., Kuchler-Bopp, S., Hu, B., Haikel, Y. and Lesot, H. (2008) Vascularization of engineered teeth. Journal of Dental Research, 87, 1138-1143. doi:10.1177/154405910808701216
[6] Hu, B., Nadiri, A., Bopp-Kuchler, S., Perrin-Schmitt, F. and Lesot, H. (2005) Dental epithelial histomorphogenesis in vitro. Journal of Dental Research, 84, 521-525. doi:10.1177/154405910508400607
[7] Zhang, S. (2003) Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 21, 1171-1178. doi:10.1038/nbt874
[8] Lynn, D.M. (2006) Layers of opportunity: Nanostructured polymer assemblies for the delivery of macromolecular therapeutics. Soft Matter, 2, 269-273. doi:10.1039/b517860f
[9] Decher, G. (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 277, 1232-1237. doi:10.1126/science.277.5330.1232
[10] Jessel, N., Atalar, F., Lavalle, P., Mutterer, J., Decher, G., Schaaf, P., Voegel, J.-C. and Ogier, J. (2003) Bioactive coatings based on a polyelectrolyte multilayer architecture functionalized by embedded proteins. Advanced Materials, 15, 692-695. doi:10.1002/adma.200304634
[11] Benkirane-Jessel, N., Lavalle, P., Meyer, F., Audouin, F., Frisch, B., Schaaf, P., Ogier, J., Decher, G. and Voegel, J.-C. (2004) Control of monocyte morphology on and response to model surfaces for implants equipped with anti-inflammatory agents. Advanced Materials, 16, 1507-1511. doi:10.1002/adma.200306613
[12] Benkirane-Jessel, N., Schwinte, P., Falvey, P., Darcy, R., Haikel, Y., Schaaf, P., Voegel, J.-C. and Ogier, J. (2004) Build-up of polypeptide multilayer coatings with anti-inflammatory properties based on the embedding of piroxicam-cyclodextrin complexes. Advanced Functional Materials, 14, 174-182. doi:10.1002/adfm.200304413
[13] Jessel, N., Oulad-Abdeighani, M., Meyer, F., Lavalle, P., Haikel, Y., Schaaf, P. and Voegel, J.-C. (2006) Multiple and time-scheduled in situ DNA delivery mediated by beta-cyclodextrin embedded in a polyelectrolyte multilayer. Proceedings of the National Academy of Sciences, 103, 8618-8621. doi:10.1073/pnas.0508246103
[14] Kim, B.S., Park, S.W. and Hammond, P.T. (2008) Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano, 2, 386-392. doi:10.1021/nn700408z
[15] Benkirane-Jessel, N., Lavalle, P., Hubsch, E., Holl, V., Senger, B., Haikel, Y., Voegel, J.C., Ogier, J. and Schaaf, P. (2005) Short-time timing of the biological activity of functionalized polyelectrolyte multilayers. Advanced Functional Materials, 4, 648-654. doi:10.1002/adfm.200400129
[16] Dierich, A., Le Guen, E., Messaddeq, N., Stoltz, J.F., Netter, P., Schaaf, P., Voegel, J.-C. and Benkirane-Jessel, N. (2007) Bone formation mediated by synergy-acting growth factors embedded in a polyelectrolyte multilayer film. Advanced Materials, 19, 693-697. doi:10.1002/adma.200601271
[17] Facca, S., Cortez, C., Mendoza-Palomares, C., Messadeq, N., Dierich, A., Johnston, A.P., Mainard, D., Voegel, J.-C., Caruso, F. and Benkirane-Jessel, N. (2010) Active multilayered capsules for in vivo bone formation. Proceedings of the National Academy of Sciences, 107, 3406-3411. doi:10.1073/pnas.0908531107
[18] Krogman, K.C., Lowery, J.L., Zacharia, N.S., Rutledge, G.C. and Hammond, P.T. (2009) Spraying asymmetry into functional membranes layer-by-layer. Nature Materials, 8, 512-518. doi:10.1038/nmat2430
[19] Nadiri, A., Kuchler-Bopp, S., Mjahed, H., Hu, B, Haikel, Y., Schaaf, P., Voegel, J.-C. and Benkirane-Jessel, N. (2007) Cell apoptosis control using BMP4 and noggin embedded in a polyelectrolyte multilayer film. Small, 9, 1577-1583. doi:10.1002/smll.200700115
[20] Mendoza-Palomares, C., Ferrand, A., Facca, S., Fioretti, F., Ladam, G., Kuchler-Bopp, S., Regnier, T., Mainard, D. and Benkirane-Jessel, N. (2012) Smart hybrid materials equipped by nanoreservoirs of therapeutics. ACS Nano, 6, 483-490. tdoi:10.1021/nn203817t

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.