Biodiversity Assessment of Sugar Beet Species and Its Wild Relatives: Linking Ecological Data with New Genetic Approaches

DOI: 10.4236/ajps.2013.48A003   PDF   HTML     6,150 Downloads   9,364 Views   Citations

Abstract

The value of crop wild relatives has long been acknowledged and this wild resource has been used to improve crop performance with clear economic benefits. Sugar beet (Beta vulgaris subsp. vulgaris) is the most economically valuable crop species in the order Caryophyllales, B. vulgaris subsp. maritima being the ancestor of the cultivated beets. The wild species of the genus Beta s.l. are commonly found in coastal areas of Europe and Mediterranean Region, where a rich genetic heritage still exists. Broadening the genetic base of sugar beet by introgression with wild relatives is a growing need regarding the maintenance of ecologically important traits. Since wild relatives have adapted to specific habitats, they constitute an important source of novel traits for the beet breeding pool. So, we conducted a broader research project aiming to delimit taxa and identify priority locations to establish genetic reserves of the wild Beta species occurring in Portugal (Western Iberian Peninsula). The aim of this study was: 1) to identify and characterize the main habitats of these wild Beta species; and 2) to present a review of some genetic tools available for future application in sugar beet breeding. In this review, we have focused on EcoTILLING as a molecular tool to assess DNA polymerphisms in wild populations of Beta and identify candidate genes related to drought and salt tolerance, as well as addressed some issues related to next-generation sequencing (NGS) technologies as a new molecular tool to assess adaptive genetic variation on the wild relatives of sugar beet.

Share and Cite:

F. Monteiro, M. Romeiras, D. Batista and M. Duarte, "Biodiversity Assessment of Sugar Beet Species and Its Wild Relatives: Linking Ecological Data with New Genetic Approaches," American Journal of Plant Sciences, Vol. 4 No. 8A, 2013, pp. 21-34. doi: 10.4236/ajps.2013.48A003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Hajjar and T. Hodgkin, “The Use of Wild Relatives in Crop Improvement: A Survey of Developments over the Last 20 Years,” Euphytica, Vol. 156, No. 1-2, 2007, pp. 1-13. doi:10.1007/s10681-007-9363-0
[2] N. Maxted and S. Kell, “Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs,” FAO consultancy Report, Commission on Genetic Resources for Food and Agriculture, Rome, 2009, pp. 1-265. http://www.fao.org/docrep/013/i1500e/i1500e18a.pdf
[3] B. V. Ford-Lloyd, M. Schmidt, S. J. Armstrong, O. Barazani, J. Engels, R. Hadas, K. Hammer, S. P. Kell, D. Kang, K. Khoshbakht, Y. Li, C. Long, B.-R. Lu, K. Ma, V. T. Nguyen, L. Qiu, S. Ge, W. Wei and Z. Zhang, “Crop Wild Relatives—Undervalued, Underutilized and under Threat?” BioScience, Vol. 61, No. 7, 2011, pp. 559-565. doi:10.1525/bio.2011.61.7.10
[4] N. Maxted, B. V. Ford-Lloyd, S. L. Jury, S. P. Kell and M. A. Scholten, “Towards a Definition of a Crop Wild Relative,” Biodiversity and Conservation, Vol. 15, No. 8, 2006, pp. 2673-2685. doi:10.1007/s10531-005-5409-6
[5] S. D. Tanksley and S. R. McCouch, “Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild,” Science, Vol. 277, No. 5329, 1997, pp. 1063-1066. doi:10.1126/science.277.5329.1063
[6] S. P. Kell, H. Knüpffer, S. L. Jury, N. Maxted and B. V. Ford-Lloyd, “Catalogue of Crop Wild Relatives for Europe and the Mediterranean,” University of Birmingham, Birmingham, 2005. http://www.pgrforum.org/cwris/cwris.asp
[7] S. P. Kell, S. L. Jury, H. Knupffer, B. V. Ford-Lloyd and N. Maxted, “PGR Forum: Serving the Crop Wild Relative User Community,” Bocconea, Vol. 21, 2008, pp. 413-421.
[8] M. Bilz, S. P. Kell, N. Maxted and R. V. Lansdown, “European Red List of Vascular Plants,” Publications Office of the European Union, Luxembourg, 2011.
[9] S. Stolton, T. Boucher, N. Dudley, J. Hoekstra, N. Maxted and S. Kell, “Ecoregions with Crop Wild Relatives are Less Well Protected,” Biodiversity Journal of Life on Earth, Vol. 9, No. 1-2, 2008, pp. 52-55. doi:10.1080/14888386.2008.9712883
[10] N. Maxted, B. V. Ford-Lloyd and S. P. Kell, “Crop Wild Relatives: Establishing the Context,” In: N. Maxted, B. V. Ford-Lloyd, S. P. Kell, J. Iriondo, E. Dulloo and J. Turok Eds., Crop Wild Relative Conservation and Use, CABI Publishing, Wallingford, 2008, pp. 3-30.
[11] E. Biancardi, L. W. Panella and R. T. Lewellen, “Beta maritima: The Origin of Beets,” Springer, New York, 2012, p. 250. doi:10.1007/978-1-4614-0842-0
[12] J. Weiland and G. Koch, “Sugarbeet Leaf Spot Disease (Cercospora beticola Sacc.),” Molecular Plant Pathology, Vol. 5, No. 3, 2004, pp. 157-166. doi:10.1111/J.1364-3703.2004.00218.X
[13] S. Knapp, M. S. Vorontsova and J. Prohens, “Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group,” PLoS ONE, Vol. 8, 2013, e57039. doi:10.1371/journal.pone.0057039
[14] L. W. Panella and R. T. Lewellen, “Broadening the Genetic Base of Sugar Beet: Introgression from Wild Relatives,” Euphytica, Vol. 154, No. 3, 2006, pp. 383-400. doi:10.1007/s10681-006-9209-1
[15] B. V. Ford-Lloyd, “Sources of Genetic Variation, Genus Beta” In: E. Biancardi, L. G. Campbell, G. N. Skaracis and M. De Biaggi, Eds., Genetics and Breeding of Sugar Beet, Science Publishers, Inc., Enfield, 2005, pp. 25-33.
[16] J. M. McGrath, L. Panella and L. Frese, “Chapter 1: Beta,” In: C. Kole, Ed., Wild Crop Relatives: Genomic and Breeding Resources, Industrial Crops, Springer-Verlag, Berlin Heidelberg, 2011, pp. 1-28. doi:10.1007/978-3-642-21102-7_1
[17] S. Hohmann, J. W. Kadereit and G. Kadereit, “Understanding Mediterranean-Californian Disjunctions: Molecular Evidence from Chenopodiaceae-Betoideae,” Taxon, Vol. 55, No. 1, 2006, pp. 67-78.
[18] M. C. Duarte, “The Wild Relatives of Beta: Genetic Diversity Assessment and Biochemical Studies,” Instituto de Investigacao Científica Tropical, I.P. (IICT) (IICT/ MNE), Project Report of the Project PTDC/AGR-AAM/ 73144/2006 Funded by Portuguese Foundation for Science and Technology, 2012.
[19] P. K. Holmgren, N. H. Holmgren and L. C. Barnett, “Index Herbariorum, Part I: The Herbaria of the World,” The New York Botanic Garden Press, New York, 1990.
[20] S. Castro, M. M. Romeiras, M. Castro, M. C. Duarte and J. Loureiro, “Hidden Diversity in Wild Beta Taxa from Portugal: Insights from Genome Size and Ploidy Level Estimations Using Flow Cytometry,” Plant Science, Vol. 207, 2013, pp. 72-78. doi:10.1016/j.plantsci.2013.02.012.
[21] L. Kubiak-Martens, “The Plant Food Component of the Diet at the Late Mesolithic (Ertebolle) Settlement at Tybrind Vig, Denmark,” Vegetation History and Archaeobotany, Vol. 8, No. 1-2, 1999, pp. 117-127. doi:10.1007/BF02042850
[22] C. Winner, “History of the Crop,” In: D. A. Cooke and R. Scott, Eds., The Sugar Beet Crop: Science into Practice, Chapman and Hall, London, 1993, pp. 1-35.
[23] H. E. Fischer, “Origin of the ‘Weisse Schlesische Rube’ (White Silesian Beet) and Resynthesis of Sugar Beet,” Euphytica, Vol. 41, No. 1-2, 1989, pp. 75-80. doi:10.1007/BF00022414
[24] L. Frese, B. Desprez and D. Ziegler, “Potential of Genetic Resources and Breeding Strategies for Base-Broadening in Beta (English),” In: H. D. Cooper, C. Spillane and T. Hodgkin, Eds., Broadening the Genetic Base of Crop Production, IPGRI/FAO, 2001, pp. 295-309. doi:10.1079/9780851994116.0295
[25] G. H. Coons, “Interspecific Hybrids between Beta vulgaris L. and the Wild Species of Beta,” Journal of the American Society of Sugar Beet Technologists, Vol. 18, 1975, pp. 281-306.
[26] H. Savitsky, “Hybridization between Beta vulgaris and Beta procumbens and Transmission of Nematode (Heterodera schachtii) Resistance to Sugar Beet,” Canadian Journal of Genetics and Cytology, Vol. 17, No. 2, 1975, pp. 197-209. doi:10.1139/g75-027
[27] H. Savitsky, “Nematode (Heterodera schachtii) Resistance and Meiosis in Diploid Plants from Interspecific Beta vulgaris X Beta procumbens hybrids,” Canadian Journal of Genetics and Cytology, Vol. 20, No. 2, 1978, pp. 177-186. doi:10.1139/g78-019
[28] W. Heijbroek, A. J. Roelands and J. H. de Jong, “Transfer of Resistance to Beet Cyst Nematode from Beta patellaris to Sugar Beet,” Euphytica, Vol. 32, No. 2, 1983, pp. 103-108. doi:10.1007/BF00021437
[29] E. Biancardi, L. G. Campbell, G. N. Skaracis and M. De Biaggi, “Genetics and Breeding of Sugar Beet,” Science Publishers, Inc., Enfield, 2005.
[30] P. Draycott, “Sugar Beet,” Blackwell, Oxford, 2006.
[31] K. Schumacher, J. Schondelmaier, E. Barzen, G. Steinrücken, D. Borchardt, W. E. Weber, C. Jung and F. Salamini, “Combining Different Linkage Maps in Sugar Beet (Beta vulgaris L.) to Make One Map,” Plant Breeding, Vol. 116, 1997, pp. 23-38. doi:10.1111/j.1439-0523.1997.tb00971.x
[32] S. J. Rae, C. Aldam, I. Dominguez, M. Hoebrechts, S. R. Barnes and K. J. Edwards, “Development and Incorporation of Microsatellite Markers into the Linkage Map of Sugar Beet (Beta vulgaris spp.),” Theoretical and Applied Genetics, Vol. 100, No. 8, 2000, pp. 1240-1248. doi:10.1007/s001220051430
[33] V. Laurent, P. Devaux, T. Thiel, F. Viard, S. Mielordt, P. Touzet and M. C. Quillet, “Comparative Effectiveness of Sugar Beet Microsatellite Markers Isolated from Genomic Libraries and GenBank ESTs to Map the Sugar Beet Genome,” Theoretical and Applied Genetics, Vol. 115, No. 6, 2007, pp. 793-805. doi:10.1007/s00122-007-0609-y
[34] K. Schneider, D. Kulosa, T. R. Soerensen, S. Mohring, M. Heine, G. Durstewitz, A. Polley, E. Weber, Jamsari, J. Lein, U. Hohmann, E. Tahiro, B. Weisshaar, B. Schulz, G. Koch, C. Jung and M. Ganal, “Analysis of DNA Polymorphisms in Sugar Beet (Beta vulgaris L.) and Development of an SNP-Based Map of Expressed Genes,” Theoretical and Applied Genetics, Vol. 115, No. 5, 2007, pp. 601-615. doi:10.1007/s00122-007-0591-4
[35] F. J. Kopisch-Obuch, G. G. G. Capistrano, A. Müller, H.J. Harloff, S. L. M. Frerichmann and C. Jung, “Molecular Breeding Research with Sugar Beet,” Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Pfl anzenzüchter Saatgutkaufl eute Osterreichs, 2008, pp. 75-76.
[36] D. Cai, M. Kleine, S. Kifle, H. Harloff, N. N. Sandal, K. A. Marcker, R. M. Klein-Lankhorst, E. M. J. Salentijn, W. Lange, W. J. Stiekema, U. Wyss, F. M. W. Grundler and C. Jung, “Positional Cloning of a Gene for Nematode Resistance in Sugar Beet,” Science, Vol. 275, No. 5301, 1997, pp. 832-834. doi:10.1126/science.275.5301.832
[37] J. C. Dohm, C. Lange, D. Holtgrawe, T. Rosleff Sorensen, D. Borchardt, D. Schulz, H. Lehrach, B. Weisshaar and H. Himmelbauer, “Palaeohexaploid Ancestry for Caryophyllales Inferred from Extensive Gene-Based Physical and Genetic Mapping of the Sugar Beet Genome (Beta vulgaris),” The Plant Journal, Vol. 70, No. 3, 2012, pp. 528-540. doi:10.1111/j.1365-313X.2011.04898.x
[38] K. W. Jaggard, A. M. Dewar and J. D. Pidgeon, “The Relative Effects of Drought Stress and Virus Yellows on the Yield of Sugar Beet in the UK, 1980-1995,” The Journal of Agricultural Science, Vol. 130, No. 3, 1998, pp. 337-343.
[39] J. D. Pidgeon, A. R. Werker, K. W. Jaggard, G. M. Richter, D. H. Lister and P. D. Jones, “Climatic Impact on the Productivity of Sugar Beet in Europe, 1961-1995,” Agricultural and Forest Meteorology, Vol. 109, No. 1, 2001, pp. 27-37. doi:10.1016/S0168-1923(01)00254-4
[40] E. S. Ober and M. C. Luterbacher, “Genotypic Variation for Drought Tolerance in Beta vulgaris,” Annals of Botany, Vol. 89, No. 7, 2002, pp. 917-924. doi:10.1093/aob/mcf093
[41] F. Viard, J.-F. Arnaud, M. Delescluse and J. Cuguen, “Tracing Back Seed and Pollen Flow within the CropWild Beta vulgaris Complex: Genetic Distinctiveness vs. Hot Spots of Hybridization over a Regional Scale,” Molecular Ecology, Vol. 13, No. 6, 2004, pp. 1357-1364. doi:10.1111/j.1365-294X.2004.02150.x
[42] S. Fénart, J. F. Arnaud, I. De Cauwer and J. Cuguen, “Nuclear and Cytoplasmic Genetic Diversity in Weed Beet and Sugar Beet Accessions Compared to Wild Relatives: New Insights into the Genetic Relationships within the Beta vulgaris Complex Species,” Theoretical and Applied Genetics, Vol. 116, No. 8, 2008, pp. 1063-1077. doi:10.1007/s00122-008-0735-1
[43] D. I. Jarvis and T. Hodgkin, “Wild Relatives and Crop Cultivars: Detecting Natural Introgression and Farmer Selection of New Genetic Combinations in Agroecosystems,” Molecular Ecology, Vol. 8, Suppl. 12, 1999, pp. S159-S173. doi:10.1046/j.1365-294X.1999.00799.x
[44] D. Bartsch and I. Schuphan, “Lessons We Can Learn from Ecological Biosafety Research,” Journal of Biotechnology, Vol. 98, No. 1, 2002, pp. 71-77. doi:10.1016/S0168-1656(02)00087-1
[45] B. Desplanque, P. Boudry, K. Broomberg, P. SaumitouLaprade, J. Cuguen and H. Van Dijk, “Genetic Diversity and Gene Flow Between Wild, Cultivated and Weedy Forms of Beta vulgaris L. (Chenopodiaceae), Assessed by RFLP and Microsatellite Markers,” Theoretical and Applied Genetics, Vol. 98, No. 8, 1999, pp. 1194-1201. doi:10.1007/s001220051184
[46] F. Viard, J. Bernard and B. Desplanque, “Crop-Weed Interactions in the Beta vulgaris Complex at a Local Scale: Allelic Diversity and Gene Flow within Sugar Beet Fields,” Theoretical and Applied Genetics, Vol. 104, No. 4, 2002, pp. 688-697. doi:10.1007/s001220100737
[47] J.-F. Arnaud, S. Fénart, C. Godé, S. Deledicque, P. Touzet and J. Cuguen, “Fine-Scale Geographical Structure of Genetic Diversity in Inland Wild Beet Populations,” Molecular Ecology, Vol. 18, No. 15, 2009, pp. 3201-3215. doi:10.1111/j.1365-294X.2009.04279.x
[48] J.-F. Arnaud, S. Fénart, M. Cordellier and J. Cuguen “Populations of Weedy Crop-Wild Hybrid Beets Show Contrasting Variation in Mating System and Population Genetic Structure,” Evolutionary Applications, Vol. 3, No. 3, 2010, pp. 305-318. doi:10.1111/j.1752-4571.2010.00121.x
[49] C. E. Lee and G. W. Gelembiuk, “Evolutionary Origins of invasive Populations,” Evolutionary Applications, Vol. 1, No. 3, 2008, pp. 427-448. doi:10.1111/j.1752-4571.2008.00039.x
[50] V. Fievet, P. Touzet, J. F. Arnaud and J. Cuguen, “Spatial Analysis of Nuclear and Cytoplasmic DNA Diversity in Wild Sea Beet (Beta vulgaris ssp. maritima) Populations: Do Marine Currents Shape the Genetic Structure?” Molecular Ecology, Vol. 16, No. 9, 2007, pp. 1847-1864. doi:10.1111/j.1365-294X.2006.03208.x
[51] M. J. M. Smulders, G. D. Esselink, I. Everaert, J. De Riek and B. Vosman, “Characterisation of Sugar Beet (Beta vulgaris L. ssp. vulgaris) Varieties Using Microsatellite Markers,” BMC Genetics, Vol. 11, 2010, p. 41. doi:10.1186/1471-2156-11-41
[52] B. I. G. Haussmann, H. K. Parzies, T. Presterl, Z. Susic, and T. Miedaner, “Plant Genetic Resources in Crop Improvement,” Plant Genetic Resources, Vol. 2, No. 1, 2004, pp. 3-21. doi:10.1079/PGR200430
[53] A. Rafalski, “Applications of Single Nucleotide Polymorphisms in Crop Genetics,” Current Opinion in Plant Biology, Vol. 5, No. 2, 2002, pp. 94-100. doi:10.1016/S1369-5266(02)00240-6
[54] M. W. Ganal, T. Altmann and M. S. Roder, “SNP Identification in Crop Plants,” Current Opinion in Plant Biology, Vol. 12, No. 2, 2009, pp. 211-217. doi:10.1016/j.pbi.2008.12.009
[55] T. Jehan and S. Lakhanpaul, “Single Nucleotide Polymorphism (SNP)—Methods and Applications in Plant Genetics: A Review,” Indian Journal of Biotechnology, Vol. 5, No. 4, 2006, pp. 435-449.
[56] C. M. Fusari, V. V. Lia, H. E. Hopp, R. A. Heinz and N. B. Paniego, “Identification of Single Nucleotide Polymorphisms and Analysis of Linkage Disequilibrium in Sunflower Elite Inbred Lines Using the Candidate Gene Approach,” BMC Plant Biology, Vol. 8, 2006, p. 7. doi:10.1186/1471-2229-8-7
[57] A. Hayward, A. Mason, J. Dalton-Morgan, M. Zander, D. Edwards and J. Batley, “SNP Discovery and Applications in Brassica napus,” Journal of Plant Biotechnology, Vol. 39, No. 1, 2011, pp. 1-12. doi:10.5010/JPB.2012.39.1.049
[58] L. M. T. Bradbury, T. L. Fitzgerald, R. J. Henry, Q. Jin and D. L. E. Waters, “The Gene for Fragrance in Rice,” Plant Biotechnology Journal, Vol. 3, No. 3, 2005, pp. 363-370. doi:10.1111/j.1467-7652.2005.00131.x
[59] R. Juwattanasomran, P. Somta, S. Chankaew, T. Shimizu, S. Wongpornchai, A. Kaga and P. Srinives, “A SNP in GmBADH2 Gene Associates with Fragrance in Vegetable Soybean Variety ‘Kaori’ and SNAP Marker Development for the Fragrance,” Theoretical and Applied Genetics, Vol. 122, No. 3, 2011, pp. 533-541. doi:10.1007/s00122-010-1467-6.
[60] P. H. van Tienderen, A. A. de Haan, C. G. van der Linden and B. Vosmantiederen, “Biodiversity Assessment Using Markers for Ecologically Important Traits,” Trends in Ecology & Evolution, Vol. 17, No. 12, 2002, pp. 577-582. doi:10.1016/S0169-5347(02)02624-1
[61] A. S. Duque, A. M. de Almeida, A. B. da Silva, J. M. da Silva, A. P. Farinha, D. Santos, P. Fevereiro and S. S. Araújo, “Abiotic Stress Responses in Plants: Unraveling the Complexity of Genes and Networks to Survive,” In: K. Vahdati and C. Leslie, Eds., Abiotic Stress-Plant Responses and Applications in Agriculture, InTech, Rijeka, 2013. doi:10.5772/52779
[62] L. Xiong, K. S. Schumaker and J.-K. Zhu, “Cell Signaling during Cold, Drought, and Salt Stress,” The Plant Cell, Vol. 14, Suppl. 1, 2002, pp. S165-S183. www.plantcell.org/cgi/doi/10.1105/tpc.000596
[63] J. Z. Zhang, R. A. Creelman and J.-K. Zhu, “From Laboratory to Field. Using Information from Arabidopsis to Engineer Salt, Cold, and Drought Tolerance in Crops,” Plant Physiology, Vol. 135, No. 2, 2004, pp. 615-621. www.plantphysiol.org/cgi/doi/10.1104/pp.104.040295
[64] M. Hajheidari, M. Abdollahian-Noghabi, H. Askari, M. Heidari, S. Y. Sadeghian, E. S. Ober and G. H. Salekdeh, “Proteome Analysis of Sugar Beet Leaves under Drought Stress,” Proteomics, Vol. 5, No. 4, 2005, pp. 950-960. doi:10.1002/pmic.200401101
[65] G. Adler, E. Blumwald and D. Bar-Zvi, “The Sugar Beet Gene Encoding the Sodium/Proton Exchanger 1 (BvNHX1) is Regulated by a MYB Transcription Factor” Planta, Vol. 232, No. 1, 2010, pp. 187-195. doi:10.1007/s00425-010-1160-7
[66] E. Nevo and G. Chen, “Drought and Salt Tolerances in Wild Relatives for Wheat and Barley Improvement,” Plant, Cell & Environment, Special Issue on Drought and Salinity Stress, Vol. 33, No. 4, 2010, pp. 670-685. doi:10.1111/j.1365-3040.2009.02107.x
[67] L. Comai, K. Young, B. J. Till, S. H. Reynolds, E. A. Greene, C. A. Codomo, L. C. Enns, J. E. Johnson, C. Burtner, A. R. Odden and S. Henikoff, “Efficient Discovery of DNA Polymorphisms in Natural Populations by Ecotilling,” The Plant Journal, Vol. 37, No. 5, 2004, pp. 778-786. doi:10.1111/j.0960-7412.2003.01999.x
[68] S. Henikoff, B. J. Till and L. Comai, “TILLING. Traditional Mutagenesis Meets Functional Genomics,” Plant Physiology, Vol. 135, No. 2, 2004, pp. 630-636. doi:10.1104/pp.104.041061
[69] G. Cordeiro, F. G. Eliott and R. J. Henry, “An Optimized Ecotilling Protocol for Polyploids or Pooled Samples Using a Capillary Electrophoresis System,” Analytical Biochemistry, Vol. 355, No. 1, 2006, pp. 145-147. doi:10.1016/j.ab.2006.03.026
[70] S. Negrao, C. Almadanim, I. Pires, K. L. McNally and M. M. Oliveira, “Use of EcoTILLING to Identify Natural Allelic Variants of Rice Candidate Genes Involved in Salinity Tolerance,” Plant Genetic Resources, Vol. 9, No. 2, 2011, pp. 300-304. doi:10.1017/S1479262111000566
[71] S. L. Frerichmann, M. Kirchhoff, A. E. Müller, A. J. Scheidig, C. Jung and F. J. Kopisch-Obuch, “EcoTILLING in Beta vulgaris Reveals Polymorphisms in the FLC-Like Gene BvFL1 that Are Associated with Annuality and Winter Hardiness,” BMC Plant Biology, Vol. 13, 2013, p. 52. doi:10.1186/1471-2229-13-52
[72] E. J. Gilchrist, G. W. Haughn, C. C. Ying, S. P. Otto, J. Zhuang, D. Cheung, B. Hamberger, F. Aboutorabi, T. Kalynyak, L. Johnson, J. Bohlmann, B. E. Ellis, C. J. Douglas and Q. C. Cronk, “Use of Ecotilling as an Efficient SNP Discovery Tool to Survey Genetic Variation in Wild Populations of Populus trichocarpa,” Molecular Ecology, Vol. 15, No. 5, 2011, pp. 1367-1378. doi:10.1111/j.1365-294X.2006.02885.x
[73] C. Nieto, F. Piron, M. Dalmais, C. F. Marco, E. Moriones, M. L. Gómez-Guillamón, V. Truniger, P. Gómez, J. Garcia-Mas, M. A. Aranda and A. Bendahmane, “EcoTILLING for the Identification of Allelic Variants of Melon eIF4E, a Factor that Controls Virus Susceptibility,” BMC Plant Biology, Vol. 21, 2007, p. 34. doi:10.1186/1471-2229-7-34.
[74] N. Mejlhede, Z. Kyjovska, G. Backes, K. Burhenne, S. K. Rasmussen and A. Jahoor, “EcoTILLING for the Identification of Allelic Variation in the Powdery Mildew Resistance Genes mlo and Mla of Barley,” Plant Breeding, Vol. 125, No. 5, 2006, pp. 461-467. doi:10.1111/j.1439-0523.2006.01226.x
[75] J. C. Knight, “Allele-Specific Gene Expression Uncovered,” Trends in Genetics, Vol. 20, No. 3, 2004, pp. 113-116. doi:10.1016/j.tig.2004.01.001
[76] L. F. Thomas and P. Sætrom, “Single Nucleotide Polymorphisms Can Create Alternative Polyadenylation Signals and Affect Gene Expression through Loss of Micro RNA-Regulation,” PLoS Computational Biology, Vol. 8, No. 8, 2012, Article ID: e1002621. doi:10.1371/journal.pcbi.1002621
[77] M. Guo, M. A. Rupe, C. Zinselmeier, J. Habben, B. A. Bowen and O. S. Smith, “Allelic Variation of Gene Expression in Maize Hybrids,” The Plant Cell, Vol. 16, No. 7, 2004, pp. 1707-1716. doi:10.1105/tpc.022087
[78] N. M. Springer and R. M. Stupar, “Allele-Specific Expression Patterns Reveal Biases and Embryo-Specific Parent-of-Origin Effects in Hybrid Maize,” The Plant Cell, Vol. 19, No. 8, 2007, pp. 2391-2402. www.plantcell.org/cgi/doi/10.1105/tpc.107.052258
[79] Y. Zhuang and K. L. Adams, “Extensive Allelic Variation in Gene Expression in Populus F1 Hybrids,” Genetics, Vol. 177, No. 4, 2007, pp. 1987-1996. doi:10.1534/genetics.107.080325
[80] M. von Korff, S. Radovic, W. Choumane, K. Stamati, S. M. Udupa, S. Grando, S. Ceccarelli, I. Mackay, W. Powell, M. Baum and M. Morgante, “Asymmetric AlleleSpecific Expression in Relation to Developmental Variation and Drought Stress in Barley Hybrids,” The Plant Journal, Vol. 59, No. 1, 2009, pp. 14-26. doi:10.1111/j.1365-313X.2009.03848.x
[81] A. Akkinepalli, N. Ereful, Y. Liu, K. Malabanan, R. Howells, K. Stamati, W. Powell, H. Leung, A. Greenland, I. Mackay and D. Lee, “Snapshots of Gene Expression in Rice: Limitations for Allelic Expression Imbalance Determination,” Genome, Vol. 55, No. 5, 2012, pp. 400-406. doi:10.1139/g2012-023
[82] J. de Meaux, U. Goebel, A. Pop and T. Mitchell-Olds, “Allele-Specific Assay Reveals Functional Variation in the Chalcone Synthase Promoter of Arabidopsis thaliana that is Compatible with Neutral Evolution,” The Plant Cell, Vol. 17, No. 3, 2005, pp. 637-690. doi:10.1105/tpc.104.027839
[83] S. Little, “Amplification-Refractory Mutation System (ARMS) Analysis of Point Mutations,” Current Protocols in Human Genetics, 2001. doi:10.1002/0471142905.hg0908s07
[84] C. R. Newton, A. Graham, L. E. Heptinstall, S. J. Powell, C. Summers, N. Kalsheker, J. C. Smith and A. F. Markham, “Analysis of any Point Mutation in DNA. The Amplification Refractory Mutation System (ARMS),” Nucleic Acids Research, Vol. 17, No. 7, 1989, pp. 2503-2516.
[85] W. E. Glaab and T. R. Skopek, “A Novel Assay for Allelic Discrimination that Combines the Fluorogenic 5’ Nuclease Polymerase Chain Reaction (TaqMan) and Mismatch Amplification Mutation Assay,” Mutation Research, Vol. 430, No. 1, 1999, pp. 1-12. doi:10.1016/S0027-5107(99)00147-5
[86] L. Milani, M. Gupta, M. Andersen, S. Dhar, M. Fryknas, A. Isaksson, R. Larsson and A. C. Syvanen, “Allelic Imbalance in Gene Expression as a Guide to Cis-Acting Regulatory Single Nucleotide Polymorphisms in Cancer Cells,” Nucleic Acids Research, Vol. 35, No. 5, 2007, p. e34. doi:10.1093/nar/gkl1152
[87] J. W. Davey and M. L. Blaxter, “RADSeq: Next-Generation Population Genetics,” Briefings in Functional Genomics, Vol. 9, No. 5-6, 2010, pp. 416-423. doi:10.1093/bfgp/elq031
[88] J. W. Davey, P. A. Hohenlohe, P. D. Etter, J. Q. Boone, J. M. Catchen and M. L. Blaxter, “Genome-Wide Genetic Marker Discovery and Genotyping Using Next-Generation Sequencing,” Nature Reviews Genetics, Vol. 12, No. 7, 2011, pp. 499-510.
[89] M. R. Miller, J. Dunham, A. Amores, W. Cresko and E. Johnson, “Rapid and Cost-Effective Polymorphism Identification and Genotyping using Restriction Site Associated DNA (RAD) Markers,” Genome Research, Vol. 17, 2007, pp. 240-248. doi:10.1101/gr.5681207
[90] N. A. Baird, P. D. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver, Z. A. Lewis, E. U. Selker, W. A. Cresko and E. A. Johnson, “Rapid SNP Discovery and Genetic Mapping using Sequenced RAD Markers,” PLoS One, Vol. 3, No. 10, 2008, Article ID: e3376. doi:10.1371/journal.pone.0003376
[91] P. A. Hohenlohe, S. Bassham, P. D. Etter, N. Stiffler, E. A. Johnson and W. A. Cresko, “Population Genomics of Parallel Adaptation in Three Spine Stickleback Using Sequenced RAD Tags,” PLoS Genetics, Vol. 6, No. 2, 2010, Article ID: e1000862. doi:10.1371/journal.pgen.1000862
[92] D. Scaglione, A. Acquadro, E. Portis, M. Tirone, S. J. Knapp and S. Lanteri, “RAD Tag Sequencing as a Source of SNP Markers in Cynara cardunculus L.,” BMC Genomics, Vol. 13, 2012, p. 3. doi:10.1186/1471-2164-13-3.
[93] W. F. Pfender, M. C. Saha, E. A. Johnson and M. B. Slabaugh, “Mapping with RAD (Restriction-Site Associated DNA) Markers to Rapidly Identify QTL for Stem Rust Resistance in Lolium perenne,” Theoretical and Applied Genetics, Vol. 122, No. 8, 2011, pp. 1467-1480. doi:10.1007/s00122-011-1546-3
[94] H. Yang, Y. Tao, Z. Zheng, C. Li, M. Sweetingham and J. Howieson, “Application of Next Generation Sequencing for Rapid Marker Development in Molecular Plant Breeding: A Case Study on Anthracnose Disease Resistance in Lupinus angustifolius L.,” BMC Genomics, Vol. 13, 2011, p. 318. doi:10.1186/1471-2164-13-318.
[95] S. Deschamps, V. Llaca and G. D. May, “Genotypingby-Sequencing in Plants,” Biology, Vol. 1, No. 3, 2012, pp. 460-483. doi:10.3390/biology1030460

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.