Share This Article:

Evaluations and Selections for High Isoflavone Black Soybean Mutants Induced by NaN3 Treatment

Abstract Full-Text HTML Download Download as PDF (Size:286KB) PP. 35-40
DOI: 10.4236/ajps.2013.48A004    3,852 Downloads   5,287 Views   Citations

ABSTRACT

Sodium azide (NaN3) (2 mM) was used to induce mutation in black soybean variety CRWD for improvement of isoflavone content. The individual selections were made in M6, M7 and M8 generations, respectively. Both high levels of isoflavones and medium seed size traits were used as selection criteria. Across three growth seasons, the selected five NaN3-induced mutants accumulated more total isoflavones (average increases of 5% to 25%) than their wild type variety CRWD. Four mutants yielded more (average increases of 17% to 25%) than CRWD. Both mutants SA-M-03 (yellow cotyledon) and SA-M-05 (green cotyledon) are rich in isoflavones and may be useful in food and other applications.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

T. Jeng, Y. Shih, M. Wu, C. Wang and J. Sung, "Evaluations and Selections for High Isoflavone Black Soybean Mutants Induced by NaN3 Treatment," American Journal of Plant Sciences, Vol. 4 No. 8A, 2013, pp. 35-40. doi: 10.4236/ajps.2013.48A004.

References

[1] B. Winkel-Shirley, “Flavonoid Biosynthesis, a Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology,” Plant Physiology, Vol. 126, No. 2, 2001, pp. 485-493. doi:10.1104/pp.126.2.485
[2] T. Izumi, M. K. Piskula, O. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota and M. Kikuchi, “Soy Isoflavone Aglycones Are Absorbed Faster and in Higher Amounts than Their Glucosides in Humans,” Journal of Nutrition, Vol. 130, 2000, pp. 1695-1699.
[3] C. H. Lee, L. Yang, J. Z. Xu, S. Y. V. Yeung, Y. Huang and Z.-Y. Chen, “Relative Antioxidant Activity of Soybean Isoflavones and Their Glycosides,” Food Chemistry, Vol. 90, No. 4, 2005, pp. 735-741. doi:10.1016/j.foodchem.2004.04.034
[4] M. Messina, W. McCaskill-Stevens and J. W. Lampe, “Addressing the Soy and Breast Cancer Relationship: Review, Commentary, and Workshop Proceedings,” Journal of the National Cancer Institute, Vol. 98, No. 18, 2006, pp. 1275-1284. doi:10.1093/jnci/djj356
[5] K. D. R. Setchell, “Phytoestrogens: The Biochemistry, Physiology, and Implications for Human Health of Soybean Isoflavones,” American Journal of Clinical Nutrition, Vol. 68, No. 6, 1998, pp. 1333S-1346S.
[6] M. J. Morrison, E. R. Cober, M. F. Saleem, N. B. McLaughlin, J. Frégeau-Reid, B. L. Ma, W. Yan and L. Woodrow, “Changes in Isoflavone Concentration with 58 Years of Genetic Improvement of Short-Season Soybean Cultivars in Canada,” Crop Science, Vol. 48, No. 6, 2008, pp. 2201-2208. doi:10.2135/cropsci2008.01.0023
[7] L. Chiare, N. D. Piovesan, L. K. Naoe, C. José, J. M. S. Viana, M. A. Moreira, M.A. and E. G. de Barros, “Genetic Parameters Relating Isoflavone and Protein Content in Soybean Seeds,” Euphytica, Vol. 138, No. 1, 2004, pp. 55-60. doi:10.1023/B:EUPH.0000047060.03101.4a
[8] V. S. Primomo, V. Poysa, G. R. Ablett and C.-J. Jackson, “Agronomic Performance of Recombinant Inbred Line Populations Segregating for Isoflavones Content in Soybean Seeds,” Crop Science, Vol. 45, No. 6, 2005, pp. 2203-2211. doi:10.2135/cropsci2004.0610
[9] J. A. Hoeck, W. R. Fehr, P. A. Murphy and G. A. Welke, “Influence of Genotype and Environment on Isoflavone Contents of Soybean,” Crop Science, Vol. 40, No. 1, 2000, pp. 48-51. doi:10.2135/cropsci2000.40148x
[10] B. S. Ahloowalia and M. Maluszynski, “Induced Mutations: A New Paradigm in Plant Breeding,” Euphytica, Vol. 118, No. 2, 2001, pp. 167-173. doi:10.1023/A:1004162323428
[11] B. S. Ahloowalia, M. Maluszynski and K. Nichterlein, “Global Impact of Mutation-Derived Varieties,” Euphytica, Vol. 135, No. 2, 2004, pp. 187-204. doi:10.1023/B:EUPH.0000014914.85465.4f
[12] S. M. Rahman, V. Takagi, K. Kubota, K. Miyamoto and V. Kawakita, “The High Oleic Acid Mutant in Soybean Induced by X-Rays Irradiation,” Bioscience, Biotechnology, and Biochemistry, Vol. 58, No. 6, 1994, pp, 1070-1072.
[13] S. M. Rahman, V. Takagi, K. Kubota, K. Miyamoto and V. Kawakita, “ High Stearic Acid Soybean Mutant Induced by X-Ray Irradiation,” Bioscience, Biotechnology, and Biochemistry, Vol. 59, No. 5, 1995, pp. 922-933. doi:10.1271/bbb.59.922
[14] D. G. Caldwell, N. McCallum, P. Shaw, G. J. Muehlbauer, D. F. Marshall and R. Waugh, “A Structured Mutant Population for Forward and Reverse Genetics in Barley (Horedeum vulgare L.),” The Plant Journal, Vol. 40, No. 1, 2004, pp. 143-160. doi:10.1111/j.1365-313X.2004.02190.x
[15] F. Al-Queainy and S. Khan, “Mutagenic Effects of Sodium Azide and Its Application in Crop Improvement,” World Applied Sciences Journal, Vol. 6, No. 12, 2009, pp. 1589-1601.
[16] V. Fernández-Moya, E. Martínez-Force and R. Garcés, “Temperature Effect on a High Stearic Acid Sunflower Mutant,” Phytochemistry, Vol. 59, No. 1, 2002, pp. 33-37. doi:10.1016/S0031-9422(01)00406-X
[17] T. L. Jeng, S. H. Tseng, C. S. Wang, C. L. Chen and J. M. Sung, “Starch Biosynthesizing Enzymes in Developing Grains of Rice Cultivar Tainung 67 and Its Sodium Azide -Induced Rice Mutant,” Field Crops Research, Vol. 84, No. 3, 2003, pp. 261-269. doi:10.1016/S0378-4290(03)00094-7
[18] J. K. Mensah and B. Obadoni, “Effects of Sodium Azide on Yield Parameters of Groundnut (Arachis hypogaea L.),” African Journal of Biotechnology, Vol. 6, No. 6, 2007, pp. 668-671.
[19] T. L. Jeng, Y. J. Shih, C. C. Lai, M. T. Wu and J. M. Sung, “Anti-Oxidative Characterization of NaN3-Induced Common Bean Mutants,” Food Chemistry, Vol. 119, No. 3, 2010, pp. 1006-1011. doi:10.1016/j.foodchem.2009.08.001
[20] B. J. Xu and S. K. C. Chang, “Antioxidant Capacity of Seed Coat, Dehulled Bean, and Whole Black Soybeans in Relation to Their Distributions of Total Phenolics, Phenolic Acids, Anthocyanins, and Isoflavones,” Journal of Agricultural and Food Chemistry, Vol. 56, No. 18, 2008, pp. 8365-8373. doi:10.1021/jf801196d
[21] J.-A.Kim, S.-B. Hong, W.-S. Jung, C.-Y. Yu, K.-H. Ma, J.-G. Gwag and I.-M Chung, “Comparison of Isoflavones Composition in Seed, Embryo, Cotyledon and Seed Coat of Cook-With Rice and Vegetable Soybean,” Food Chemistry, Vol. 102, No. 3, 2007, pp. 738-744. doi:10.1016/j.foodchem.2006.06.061
[22] S. H. Kim, W. S. Jung, J. K. Ahn and I. M. Chung, “Analysis of Isoflavone Concentration and Composition in Soybean [Glycine max (L.)] Seeds between the Cropping Year and Storage for 3 Years” European Food Research and Technology, Vol. 220, No. 2, 2005, pp. 207-214. doi:10.1007/s00217-004-1048-5
[23] P. Seguin, W. Zhang, D. L. Smith and W. Deng, “Isoflavone Content of Soybean Cultivars Grown in Eastern Canada,” Journal of the Science of Food and Agriculture, Vol. 84, No. 11, 2004, pp. 1327-1332. doi:10.1002/jsfa.1825
[24] P. A. Calvino, V. O. Sadras and F. H. Andrade, “Development, Growth and Yield of Late-Sown Soybean in the Southern Pampas,” European Journal of Agronomy, Vol. 19, No. 2, 2003. pp. 265-275. doi:10.1016/S1161-0301(02)00050-3
[25] C. Tsukamoto, S. Shimada, K. Igita, S. Kudou, K. Koubun, K. Okubo and K. Kitamura, “Factors Affecting Isoflavone Content in Soybean Seeds: Changes in Isoflavones, Saponins, and Composition of Fatty Acids at Different Temperature during Seed Development,” Journal of Agricultural and Food Chemistry, Vol. 43, No. 5, 1995, pp. 1184-1192. doi:10.1021/jf00053a012

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.