[1]
|
R. Merton, “Option Pricing When Underlying Stock Returns Are Discontinuous,” Journal of Financial Economics, Vol. 3, No. 1-2, 1976, pp. 125-144.
doi:10.1016/0304-405X(76)90022-2
|
[2]
|
C. Ahn and H. Thompson, “Jump-Diffusion Processes and the Term Structure of Interest Rates,” Journal of Finance, Vol. 43, No. 1, 1988, pp. 155-174.
doi:10.1111/j.1540-6261.1988.tb02595.x
|
[3]
|
D. Bates, “Jumps and Stochastic Volatility: Exchange Rate Process Implicit in Deutsche Mark Options,” Review of Financial Studies, Vol. 9, No. 1, 1996, pp. 69-107.
doi:10.1093/rfs/9.1.69
|
[4]
|
D. Madan, P. Carr and E. Chang, “The Variance Gamma Process and Option Pricing,” European Finance Review, Vol. 2, 1998, pp. 79-105.
|
[5]
|
L. Andersen and J. Andreasen, “Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing,” Review of Derivatives Research, Vol. 4, No. 3, 2000, pp. 231-262. doi:10.1023/A:1011354913068
|
[6]
|
D. Duffie, J. Pan and K. Singleton, “Transform Analysis and Option Pricing for Affine Jump-Diffusions,” Econometrica, Vol. 68, No. 6, 2000, pp. 1343-1376.
doi:10.1111/1468-0262.00164
|
[7]
|
S. Kou, “A Jump-Diffusion Model for Option Pricing,” Management Science, Vol. 48, No. 8, 2002, pp. 1086-1101. doi:10.1287/mnsc.48.8.1086.166
|
[8]
|
S. Kou and H. Wang, “Option Pricing under a Double Exponential Jump Diffusion Model,” Management Science, Vo. 50, No. 9, 2004, pp. 1178-1192.
doi:10.1287/mnsc.1030.0163
|
[9]
|
A. Sepp, “Analytical Pricing of Double-Barrier Options under a Double-Exponential Jump-Diffusion Process: Applications of Laplace Transform,” International Journal of Theoretical and Applied Finance, Vol. 7, No. 2, 2004, pp. 151-175. doi:10.1142/S0219024904002402
|
[10]
|
K. Amin, “Jump Diffusion Option Valuation in Discrete Time,” Journal of Finance, Vol. 48, No. 5, 1993, pp. 1833-1863. doi:10.1111/j.1540-6261.1993.tb05130.x
|
[11]
|
J. Hilliard and A. Schwartz, “Pricing European and American Derivatives under a Jump-Diffusion Process: A Bivariate Tree Approach,” Journal of Financial and Quantitative Analysis, Vol. 40, No. 3, 2005, pp. 671-691.
doi:10.1017/S0022109000001915
|
[12]
|
Y. D’Halluin, P. Forsyth and K. Vetzal, “Robust Numerical Methods for Contingent Claims under Jump Diffusion Processes,” IMA Journal of Numerical Analysis, Vol. 25, No. 1, 2005, pp. 87-112. doi:10.1093/imanum/drh011
|
[13]
|
P. Carr and A. Mayo, “On the Numerical Evaluation of Option Prices in Jump Diffusion Processes,” European Journal of Finance, Vol. 13, No. 4, 2007, pp. 353-372.
|
[14]
|
A. Mayo, “Methods for the Rapid Solution of the Pricing PIDEs in Exponential and Merton Models,” Journal of Computational and Applied Mathematics, Vol. 222, No. 1, 2008, pp. 128-143. doi:10.1016/j.cam.2007.10.017
|
[15]
|
S. Clift and P. Forsyth, “Numerican Solution of Two Asset Jump Diffusion Models for Option Valuation,” Applied Numerical Mathematics, Vol. 58, No. 6, 2008, pp. 743-782. doi:10.1016/j.apnum.2007.02.005
|
[16]
|
R. Panini and R. P. Srivastav, “Option Pricing with Mellin Transforms,” Mathematical and Computer Modelling, Vol. 40, No. 1-2, 2004, pp. 43-56.
doi:10.1016/j.mcm.2004.07.008
|
[17]
|
R. Frontczak, “Valuing Options in Heston’s Stochastic Volatility Model: Another Analytical Approach,” Journal of Applied Mathematics, Vol. 2011, 2011, Article ID: 198469. doi:10.1155/2011/198469
|
[18]
|
R. Cont and P. Tankov, “Financial Modelling with Jump Processes,” Chapman & Hall/CRC, Boca Raton, 2004.
|
[19]
|
B. Eraker, M. Johannes and N. Polson, “The Impact of Jumps in Volatility and Returns,” Journal of Finance, Vol. 58, No. 3, 2003, pp. 1269-1300.
|
[20]
|
I. Gradshteyn and I. Ryzhik, “Table of Integrals, Series, and Products,” 7th Edition, Elsevier Academic Press, Amsterdam, 2007.
|