Anti-Aging Efficacy of a New Alendronate-Pravastatin Cosmetic Combination: A Randomized Double Blind Comparative Study

Abstract

Progeria is a rare genetic disease that causes accelerated aging and death in children at a mean age of 13.5 years. An aminobisphosphonate-statin combination has been shown to reduce the toxicity of the mutated protein, progerin, in progeria patient cell cultures and in a mouse model of the disease. This combination is currently being tested in a European Therapeutic Trial for progeria in Marseille (ClinicalTrials.gov identifier NCT00731016). Progerin has been shown to be produced by skin cells during physiological aging. The objective of this study was to assess the efficiency of a new and original cosmetic formulation containing alendronate and pravastatin sodium salts, reduce crow’s feet wrinkles, and cheek hollow in a double blind, randomized and placebo controlled comparative study. Three cosmetic preparations were evaluated using Fast Optical in vivo Topometry of human Skin (FOITS): one containing sodium alendronate and sodium pravastatin, a placebo, and a commercial anti-aging product. Fifty-seven female and twenty-five male volunteers between 51 and 71-year-old were selected. Each subject tested two of the three products once a day, in the evening, by spreading each selected product on one side of the face. Skin micro-relief was analyzed at 0, 28, 56 and 84 days. Statistical analysis of 7 clinical qualitative (left or right side of face, gender, and 3 skin types) and 6 quantitative parameters (age, weight at each test time, wrinkle clinical grade at inclusion time) showed no statistical differences between the three tested products. In contrast, most of the 8 quantitative FOITS parameters describing skin micro-relief were statistically improved by the alendronate-pravastatin combination compared to the placebo or to the commercial anti-aging product. A cosmetic preparation containing alendronate and pravastatin sodium salts exhibited anti-aging effects by reducing crow’s feet wrinkles and restoring cheek volume.

Share and Cite:

B. Cantecor, M. Savelli, M. Savelli, P. Piccerelle, N. Lévy, V. Bonniol and P. Cau, "Anti-Aging Efficacy of a New Alendronate-Pravastatin Cosmetic Combination: A Randomized Double Blind Comparative Study," Journal of Cosmetics, Dermatological Sciences and Applications, Vol. 3 No. 3, 2013, pp. 163-171. doi: 10.4236/jcdsa.2013.33026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. A. Farage, K. W. Miller and H. I. Maibach, “Degenerative Changes in Aging Skin,” In: M. A. Farage, K. W. Miller and H. I. Maibach, Eds., Textbook of Aging Skin, Springer, Berlin, 2010, pp. 25-35. doi:10.1007/978-3-540-89656-2_4
[2] D. L. Bissett and M. B. Johnson, “Cosmetic Anti-Aging Ingredients,” In: M. A. Farage, K. W. Miller and H. I. Maibach, Eds., Textbook of Aging Skin, Springer, Berlin, 2010, pp. 1069-1078. doi:10.1007/978-3-540-89656-2_99
[3] R. C. Hennekam, “Hutchinson-Gilford Progeria Syndrome: Review of the Phenotype,” American Journal of Medical Genetics Part A, Vol. 140, No. 23, 2006, pp. 2603-2624. doi:10.1002/ajmg.a.31346
[4] M. A. Merideth, L. B. Gordon, S. Clauss, V. Sachdev, A. C. Smith, M. B. Perry, et al., “Phenotype and Course of Hutchinson-Gilford Progeria Syndrome,” The New England Journal of Medicine, Vol. 358, No. 6, 2008, pp. 592-604. doi:10.1056/NEJMoa0706898
[5] A. De Sandre-Giovannoli, R. Bernard, P. Cau, C. Navarro, J. Amiel, I. Boccaccio, et al., “Lamin a Truncation in Hutchinson-Gilford Progeria,” Science, Vol. 300, No. 5628, 2003, p. 2055. doi:10.1126/science.1084125
[6] M. Eriksson, W. T. Brown, L. B. Gordon, M. W. Glynn, J. Singer, L. Scott, et al., “Recurrent de Novo Point Mutations in Lamin A Cause Hutchinson-Gilford Progeria Syndrome,” Nature, Vol. 423, No. 6937, 2003, pp. 293-298. doi:10.1038/nature01629
[7] C. L. Navarro, P. Cau and N. Levy, “Molecular Bases of Progeroid Syndromes,” Human Molecular Genetics, Vol. 15, Suppl. 2, 2006, pp. 151-161. doi:10.1093/hmg/ddl214
[8] P. Scaffidi and T. Misteli, “Lamin A-Dependent Nuclear Defects in Human Aging,” Science, Vol. 312, No. 5776, 2006, pp. 1059-1063. doi:10.1126/science.1127168
[9] J. Espada, I. Varela, I. Flores, A. P. Ugalde, J. Cadinanos, A. M. Pendas, et al., “Nuclear Envelope Defects Cause Stem Cell Dysfunction in Premature-Aging Mice,” The Journal of Cell Biology, Vol. 181, No. 1, 2008, pp. 27-35. doi:10.1083/jcb.200801096
[10] P. Scaffidi and T. Misteli, “Lamin A-Dependent Misregulation of Adult Stem Cells Associated with Accelerated Ageing,” Nature Cell Biology, Vol. 10, No. 4, 2008, pp. 452-459. doi:10.1038/ncb1708
[11] D. McClintock, D. Ratner, M. Lokuge, D. M. Owens, L. B. Gordon, F. S. Collins, et al., “The Mutant form of Lamin A that Causes Hutchinson-Gilford Progeria Is a Biomarker of Cellular Aging in Human Skin,” PLoS One, Vol. 2, No. 12, 2007, p. e1269. doi:10.1371/journal.pone.0001269
[12] I. Varela, S. Pereira, A. P. Ugalde, C. L. Navarro, M. F. Suarez, P. Cau, et al., “Combined Treatment with Statins and Aminobisphosphonates Extends Longevity in a Mouse Model of Human Premature Aging,” Nature Medicine, Vol. 14, No. 7, 2008, pp. 767-772. doi:10.1038/nm1786
[13] B. Cantecor, M. P. Savelli, G. Marti-Mestres, V. Bonniol, M. A. Mostefa Side Larbi and P. Piccerelle, “Recent Advances in Topical Applications for a New Anti-Aging Drug,” In: R. Chilcott and K. R. Brain, Eds., Advances in Dermatological Sciences, Royal Society of Chemistry, London, 2013.
[14] R. Bazin and E. Doublet, “Atlas du Vieillissementcutané: Volume 1, Population Européenne,” Med’Com, 2007.
[15] D. Karadzovska, J. D. Brooks, N. A. Monteiro-Riviere and J. E. Riviere, “Predicting Skin Permeability from Complex Vehicles,” Advanced Drug Delivery Reviews, Vol. 65, No. 2, 2012, pp. 265-277. doi:10.1016/j.addr.2012.01.019
[16] M. Rohr and K. Schrader, “Fast Optical in Vivo Topometry of Human Skin (FOITS): Comparative Investigation with Laser Profilometry,” SOFW Journal, Vol. 124, No. 2, 1998, pp. 52-59.
[17] M. Rohr, M. Brandt and K. Schrader, “Skin Surface Claim Supported by FOITS,” SOFW Journal, Vol. 126, No. 8, 2000, pp. 2-11.
[18] C. J. Huberty and S. Olejnik, “Applied MANOVA and Discriminant Analysis,” Wiley-interscience, Hoboken, 2006. doi:10.1002/047178947X
[19] A. Choi, H. Gang, I. Chun and H. Gwak, “The Effects of Fatty Acids in Propylene Glycol on the Percutaneous Absorption of Alendronate across the Excised Hairless Mouse Skin,” International Journal of Pharmaceutics, Vol. 357, No. 1-2, 2008, pp. 126-131. doi:10.1016/j.ijpharm.2008.01.050
[20] C. A. Scott, D. Tattersall, E. A. O’Toole and D. P. Kelsell, “Connexins in Epidermal Homeostasis and Skin Disease,” Biochimica et Biophysica Acta, Vol. 1818, No. 8, 2012, pp. 1952-1961. doi:10.1016/j.bbamem.2011.09.004
[21] K. E. Moyer and H. P. Ehrlich, “Modulation of Human Fibroblast Gap Junction Intercellular Communication by Hyaluronan,” Journal of Cellular Physiology, Vol. 196, No. 1, 2003, pp. 165-170. doi:10.1002/jcp.10288
[22] H. M. Langevin, C. J. Cornbrooks and D. J. Taatjes, “Fibroblasts form a Body-Wide Cellular Network,” Histochemistry and Cell Biology, Vol. 122, No. 1, 2004, pp. 7-15. doi:10.1007/s00418-004-0667-z
[23] T. Bellido and L. I. Plotkin, “Novel Actions of Bisphosphonates in Bone: Preservation of Osteoblast and Osteocyte Viability,” Bone, Vol. 49, No. 1, 2011, pp. 50-55. doi:10.1016/j.bone.2010.08.008
[24] M. Sato, W. Grasser, N. Endo, R. Akins, H. Simmons, D. D. Thompson, et al., “Bisphosphonate Action. Alendronate Localization in Rat Bone and Effects on Osteoclast Ultrastructure,” The Journal of Clinical Investigation, Vol. 88, No. 6, 1991, pp. 2095-2105. doi:10.1172/JCI115539
[25] M. J. Rogers, S. Gordon, H. L. Benford, F. P. Coxon, S. P. Luckman, J. Monkkonen, et al., “Cellular and Molecular Mechanisms of Action of Bisphosphonates,” Cancer, Vol. 88, Suppl. 12, 2000, pp. 2961-2978. doi:10.1002/1097-0142(20000615)88:12+<2961::AID-CNCR12>3.0.CO;2-L
[26] E. van Beek, E. Pieterman, L. Cohen, C. L?wik and S. Papapoulos, “Farnesyl Pyrophosphate Synthase Is the Molecular Target of Nitrogen-Containing Bisphosphonates,” Biochemical and Biophysical Research Communications, Vol. 264, No. 1, 1999, pp. 108-111. doi:10.1006/bbrc.1999.1499
[27] J. D. Bergstrom, R. G. Bostedor, P. J. Masarachia, A. A. Reszka and G. Rodan, “Alendronate Is a Specific, Nanomolar Inhibitor of FarnesylDiphosphate Synthase,” Archives of Biochemistry and Biophysics, Vol. 373, No. 1, 2000, pp. 231-241. doi:10.1006/abbi.1999.1502
[28] M. Xue and C. J. Jackson, “Autocrine Actions of Matrix Metalloproteinase (MMP)-2 Counter the Effects of MMP-9 to Promote Survival and Prevent Terminal Differentiation of Cultured Human Keratinocytes,” Journal of Investigative Dermatology, Vol. 128, No. 11, 2008, pp. 2676-2685. doi:10.1038/jid.2008.136
[29] A. A. Tandara and T. A. Mustoe, “MMPand TIMP-Secretion by Human Cutaneous Keratinocytes and Fibroblasts-Impact of Coculture and Hydration,” Journal of Plastic, Reconstructive & Aesthetic Surgery, Vol. 64, No. 1, 2011, pp. 108-116. doi:10.1016/j.bjps.2010.03.051
[30] S. Malgouries, S. Thibaut and B. A. Bernard, “Proteoglycan Expression Patterns in Human Hair Follicle,” British Journal of Dermatology, Vol. 158, No. 2, 2008, pp. 234-242. doi:10.1111/j.1365-2133.2007.08339.x
[31] R. V. Iozzo, “Matrix Proteoglycans: From Molecular Design to Cellular Function,” Annual Review of Biochemistry, Vol. 67, 1998, pp. 609-652.
[32] H. Jarvelainen, A. Sainio, M. Koulu, T. N. Wight and R. Penttinen, “Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy,” Pharmacological Reviews, Vol. 61, No. 2, 2009, pp. 198-223. doi:10.1124/pr.109.001289
[33] Y. Shitara and Y. Sugiyama, “Pharmacokinetic and Pharmacodynamic Alterations of 3-Hydroxy-3-Methylg-lutaryl Coenzyme A (HMG-CoA) Reductase Inhibitors: Drug-Drug Interactions and Interindividual Differences in Transporter and Metabolic Enzyme Functions,” Pharmacology & Therapeutics, Vol. 112, No. 1, 2006, pp. 71-105. doi:10.1016/j.pharmthera.2006.03.003
[34] K. M. Giacomini, S. M. Huang, D. J. Tweedie, L. Z. Benet, K. L. Brouwer, X. Chu, et al., “Membrane Transporters in Drug Development,” Nature Reviews Drug Discovery, Vol. 9, No. 3, 2010, pp. 215-236. doi:10.1038/nrd3028
[35] M. Roth, A. Obaidat and B. Hagenbuch, “OATPs, OATs and OCTs: The Organic Anion and Cation Transporters of the SLCO and SLC22A Gene Superfamilies,” British Journal of Pharmacology, Vol. 165, No. 5, 2012, pp. 1260-1287. doi:10.1111/j.1476-5381.2011.01724.x
[36] B. Hagenbuch and P. J. Meier, “The Superfamily of Organic Anion Transporting Polypeptides,” Biochimica et Biophysica Acta, Vol. 1609, No. 1, 2003, pp. 1-18. doi:10.1016/S0005-2736(02)00633-8
[37] R. Schiffer, M. Neis, D. Holler, F. Rodriguez, A. Geier, C. Gartung, et al., “Active Influx Transport Is Mediated by Members of the Organic Anion Transporting Polypeptide Family in Human Epidermal Keratinocytes,” Journal of Investigative Dermatology, Vol. 120, No. 2, 2003, pp. 285-291. doi:10.1046/j.1523-1747.2003.12031.x
[38] G. D. Kruh and M. G. Belinsky, “The MRP Family of Drug Efflux Pumps,” Oncogene, Vol. 22, No. 47, 2003, pp. 7537-7552. doi:10.1038/sj.onc.1206953
[39] Z.-S. Chen and A. K. Tiwari, “Multidrug Resistance Proteins (MRPs/ABCCs) in Cancer Chemotherapy and Genetic Diseases,” FEBS Journal, Vol. 278, No. 18, 2011, pp. 3226-3245. doi:10.1111/j.1742-4658.2011.08235.x
[40] D. Hendig, T. Langmann, S. Kocken, R. Zarbock, C. Szliska, G. Schmitz, et al., “Gene Expression Profiling of ABC Transporters in Dermal Fibroblasts of Pseudoxanthomaelasticum Patients Identifies New Candidates Involved in PXE Pathogenesis,” Laboratory Investigation, Vol. 88, No. 12, 2008, pp. 1303-1315. doi:10.1038/labinvest.2008.96
[41] L. Xing, Y. Hu and Y. Lai, “Advancement of StructureActivity Relationship of Multidrug Resistance-Associated Protein 2 Interactions,” AAPS Journals, Vol. 11, No. 3, 2009, pp. 406-413. doi:10.1208/s12248-009-9117-0
[42] F. Jowkar and M. R. Namazi, “Statins in Dermatology,” International Journal of Dermatology, Vol. 49, No. 11, 2010, pp. 1235-1243. doi:10.1111/j.1365-4632.2010.04579.x
[43] F. M. Sverdrup, M. P. Yates, L. E. Vickery, J. A. Klover, L. R. Song, C. P. Anglin, et al., “Protein Geranylgeranylation Controls Collagenase Expression in Osteoarthritic Cartilage,” Osteoarthritis Cartilage, Vol. 18, No. 7, 2010, pp. 948-955. doi:10.1016/j.joca.2010.03.015
[44] M. Crisby, G. Nordin-Fredriksson, P. K. Shah, J. Yano, J. Zhu and J. Nilsson, “Pravastatin Treatment Increases Collagen Content and Decreases Lipid Content, Inflammation, Metalloproteinases, and Cell Death in Human Carotid Plaques: Implications for Plaque Stabilization,” Circulation, Vol. 103, No. 7, 2001, pp. 926-933. doi:10.1161/01.CIR.103.7.926
[45] Y. Fukumoto, P. Libby, E. Rabkin, C. C. Hill, M. Enomoto, Y. Hirouchi, et al., “Statins Alter Smooth Muscle Cell Accumulation and Collagen Content in Established Atheroma of Watanabe Heritable Hyperlipidemic Rabbits,” Circulation, Vol. 103, No. 7, 2001, pp. 993-999. doi:10.1161/01.CIR.103.7.993
[46] H. Mo, H. Yeganehjoo, A. Shah, W. K. Mo, I. N. Soelaiman and C. L. Shen, “Mevalonate-Suppressive Dietary Isoprenoids for Bone Health,” The Journal of Nutritional Biochemistry, Vol. 23, No. 12, 2012, pp. 1543-1551. doi:10.1016/j.jnutbio.2012.07.007
[47] Y. Wang, C. Ostlund and H. J. Worman, “Blocking Protein Farnesylation Improves Nuclear Shape Abnormalities in Keratinocytes of Mice Expressing the Prelamin A Variant in Hutchinson-Gilford Progeria Syndrome,” Nucleus, Vol. 1, No. 5, 2010, pp. 432-439.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.