The Conservation of Energy Space-Time Metric for Space Outside Matter

Abstract

By using experimentally determined measurements of potential energy together with the principle of conservation of energy and solving directly, the space-time geometry equation for space outside matter is obtained. That equation fits all the experimental observations that support the accepted Schwarzschild metric, yet predicts there isn’t a singularity at the Schwarzschild radius. The accepted Schwarzschild metric is the first approximation of the conservation of energy space-time metric. No observation yet made can distinguish between the predictions of the two metrics.

Share and Cite:

V. Robinson, "The Conservation of Energy Space-Time Metric for Space Outside Matter," Journal of Modern Physics, Vol. 4 No. 8, 2013, pp. 1110-1118. doi: 10.4236/jmp.2013.48149.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Einstein, “Zur Allgemeinen Relativatstheorie,” Sitzungsberichte der Koniglich Preussischen Academie der Wissenschaften, Part 2, 1915, pp. 778-786.
[2] A. Einstein, “Erklarung der Perihelbewegung des Merkur aus der Allgemeinen Relativatstheorie,” Sitzungsberichte der Koniglich Preussischen Academie der Wissenschaften, Part 2, 1915, pp. 831-839.
[3] A. Einstein, “The Foundation of the General Theory of Relativity,” In: H. A. Lorentz, A. Einstein, H. Weyland and H. Minkowski, Eds., The Principle of Relativity, Dover Publications, New York, 1952, pp. 109-164.
[4] A. Einstein, Annalen der Physik, Vol. 42, 1916, pp. 769-822. doi:10.1002/andp.19163540702
[5] K. Schwarzschild, “Auf das Gravitationsfeld Eines Massenpunktes Entsprechend Einsteinschen Theorie,” Sitzungsberichte der Koniglich Preussischen Academie der Wissenschaften, PK1, 1916, pp. 189-196.
[6] J. Droste, General Relativity and Gravitation, Vol. 34, 2002, pp. 1545-1563 (Reprinted from Koninklije Nederland Acadamie Wetenschapen, Series A, Vol. 19, 1917, pp. 197-221.).
[7] D. Hilbert, “Die Grundlagen der Physik (Zweite Mitteilung),” Konigliche Gesellschaft der Wissenschaftenzu Gottingen, K1, 1917, pp. 53-76.
[8] H. Weyl, Annalen der Physik, Vol. 54, 1917, pp. 117-123.
[9] M. Brillouin, Journal Physic et Radium, Vol. 4, 1923, pp. 43-48. doi:10.1051/jphysrad:019230040104300
[10] M. D. Kruskal, Physical Review, Vol. 119, 1960, pp. 1743-1745. doi:10.1103/PhysRev.119.1743
[11] G. Szekeres, Mathematicae Debrecen, Vol. 7, 1960, pp. 285-301.
[12] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” W. H. Freeman and Co., New York, 1973, Chapter 31.
[13] R. P. Kerr, Physical Review Letters, Vol. 11, 1963, pp. 237-238. doi:10.1103/PhysRevLett.11.237
[14] I. Newton, “Philosophiae Naturalis Principia Mathematica,” 1687.
[15] A. Einstein, “On the Electrodynamics of Moving Bodies,” In: H. A. Lorentz, A. Einstein, H. Weyl and H. Minkowski, Eds., The Principle of Relativity, Dover Publications, New York, 1952, pp. 37-65.
[16] A. Einstein, Annalen der Physik, Vol. 17, 1905, pp. 891-921. doi:10.1002/andp.19053221004
[17] A. Einstein, “Does the Inertia of a Body Depend upon its Energy Content?” In: H. A. Lorentz, A. Einstein, H. Weyl and H. Minkowski, The Principle of Relativity, Dover Publications, New York, 1952, pp. 69-71.
[18] A. Einstein, Annalen der Physsik, Vol. 18, 1905, pp. 639-641. doi:10.1002/andp.19053231314
[19] M. Evans and J. P. Vigier, “The Enigmatic Photon,” Kluwer Academic Publishers, Dordrecht, 1994, Chapter 8.
[20] M. B. Van der Mark and G. W. t’Hooft, “Light Is Heavy,” Van A tot Q, NNV, 2000, pp. 1-6. http://nnvaq.tue.nl/atoq/2000/BIJDRAGE-vdMark-tHooft.pdf
[21] R. V. Pound, Classical and Quantum Gravity, Vol. 17, 2000, pp. 2303-2311. doi:10.1088/0264-9381/17/12/301
[22] A. Einstein, “On the Influence of Gravitation on the Propagation of Light,” In: H. A. Lorentz, A. Einstein, H. Weyl and H. Minkowski, The Principle of Relativity, Dover Publications, New York, 1952, pp. 99-108.
[23] A. Einstein, Annalen der Physik, Vol. 35, 1911, pp. 898-908.
[24] R. V. Pound and G. A. Rebka, Physical Review Letters, Vol. 3, 1959, pp. 439-441. doi:10.1103/PhysRevLett.3.439
[25] R. V. Pound and G. A. Rebka, Physical Review Letters, Vol. 4, 1960, pp. 337-341. doi:10.1103/PhysRevLett.4.337
[26] R. V. Pound and J. L. Snider, Physical Review Letters, Vol. 13, 1961, pp. 539-540.
[27] W. S. Adams, Astrophysical Journal, Vol. 31, 1910, pp. 30-61. doi:10.1086/141722
[28] M. G. Adam, Monthly Notices of the Royal Astronomical Society, Vol. 108, 1948, pp. 446-464.
[29] A. J. O’Leary, American Journal of Physics, Vol. 32, 1964, pp. 52-55. doi:10.1119/1.1970075
[30] A. S. Eddington, “Space Time and Gravitation,” Cambridge University Press, Cambridge, 1920, Chapter 7.
[31] H. Minkowski, “Space and Time,” In: H. A. Lorentz, A. Einstein, H. Weyl and H. Minkowski, Eds., The Principle of Relativity, Dover Publications, New York, 1952, pp. 75-91.
[32] H. Minkowski, Jahreschericht der Deutschen Mathematiker-Vereinigung, Vol. 18, 1909, pp. 75-88.
[33] P. Lasky, Australian Physics, Vol. 48, pp. 84-89
[34] A. S. Eddington, “Space Time and Gravitation,” Cambridge University Press, Cambridge, 1920, Chapter 8.
[35] F. W. Dyson, A. S. Eddington and C. Davidson, Philosophical Transactions of the Royal Society of London, Vol. 220A, 1920, pp. 291-333.
[36] T. L. Chow, “Gravity, Black Holes, and the Very Early Universe: An Introduction to General Relativity and Cosmology,” Springer, New York, 2008, Chapter 5. doi:10.1007/978-0-387-73631-0
[37] R. A. Matzner, “Dictionary of Geophysics, Astrophysics and Astronomy,” CRC Press, London, 2001, p. 360.
[38] K. Trencèvski, E. G. Celakoska and V. Balan, International Journal of Theoretical Physics, Vol. 50, 2011, pp. 1-26. doi:10.1007/s10773-010-0488-x
[39] A. Einstein, “über Gravitationswellen,” Sitzungsberichte der Koniglich Preussischen Academie der Wissenschaften, 1918, pp. 154-167.
[40] R. A. Hulse and J. H. Taylor, Astrophysical Journal, Vol. 195, 1975, pp. 51-53
[41] J. M. Weisberg and J. H. Taylor, General Relativity and Gravitation, Vol. 13, 1980, pp. 1-6.
[42] J. M. Weisberg and J. H. Taylor, Astrophysical Journal, Vol. 576, 2002, pp. 942-949. doi:10.1086/341803
[43] J. M. Weisberg and J. H. Taylor, “The Relativistic Binary Pulsar B1913+16: Thirty Years of Observation and Analysis,” In: F. A. Rasio and I. H. Stairs, Eds., Binary Radio Pulsars, Aspen Conference, ASP Conference Series, Vol. 328, 2005, pp. 25-31.
[44] P. Newman, “Tour the ASM Sky,” 2011. http://heasarc.gsfc.nasa.gov/docs/xte/learning_center/ASM/ns.html

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.