Nanoparticles Transport in Ceramic Matriсes: A Novel Approach for Ceramic Matrix Composites Fabrication

DOI: 10.4236/jmp.2013.48140   PDF   HTML     3,391 Downloads   4,957 Views   Citations


The results of practical implementation of a new method for porous piezoceramics, and ceramic matrix piezocomposites fabrication were presented. The method was based on nanoparticles transport in ceramic matrices using a polymer nanogranules coated or filled with a various chemicals, with successive porous ceramics fabrication processes. Different types of polymer microgranules filled and coated by metal-containing nanoparticles were used for a pilot samples fabrication. Polymer microgranules were examined using transmission and scanning electron microscopy as well as by EXAFS and X-ray emission spectroscopy. Pilot samples of nano- and microporous ceramics and composites were fabricated using different piezoceramics compositions (PZT, lead potassium niobate and lead titanate) as a ceramic matrix bases. Resulting ceramic matrix piezocomposites were composed by super lattices of closed or open pores filled or coated by nanoparticles of metals, oxides, ferromagnetics etc. embedded in piezoceramic matrix. Dielectric and piezoelectric parameters of pilot samples were measured using piezoelectric resonance analysis method. New family of nano- and microporous piezoceramics and ceramic matrix piezocomposites are characterized by a unique spectrum of the electrophysical properties unachievable for standard PZT ceramic compositions and fabrication methods.

Share and Cite:

A. Rybyanets and A. Naumenko, "Nanoparticles Transport in Ceramic Matriсes: A Novel Approach for Ceramic Matrix Composites Fabrication," Journal of Modern Physics, Vol. 4 No. 8, 2013, pp. 1041-1049. doi: 10.4236/jmp.2013.48140.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. Setter, “Piezoelectric Materials in Devices,” Swiss Institute of Technology, Switzerland, 2002, pp. 1-518.
[2] A. N. Rybjanets, A. V. Nasedkin and A. V. Turik, Integrated Ferroelectrics, Vol. 63, 2004, pp. 179-182. doi:10.1080/10584580490459404
[3] P.-H. Xiang, X.-L. Dong, H. Chen, Z. Zhang and J.-K. Guo, Ceramics International, Vol. 29, 2003, pp. 499-503. doi:10.1016/S0272-8842(02)00193-1
[4] A. N. Rybianets, Ferroelectrics, Vol. 360, 2007, pp. 84-89. doi:10.1080/00150190701516210
[5] A. N. Rybyanets, “Ceramic Piezocomposites: Modeling, Technology, and Characterization,” In: I. A. Parinov Ed., Piezoceramic Materials and Devices, Nova Science Publishers Inc., New York, 2010, pp. 113-174.
[6] M. Donbrow, “Microcapsules and Nanoparticles in Medicine and Pharmacy,” CRC Press, London, 1992, pp. 1-368.
[7] S. P. Gubin, “Magnetic Nanoparticles,” Willey-VCH, Manheim, 2009, pp. 1-283.
[8] S. P. Gubin, G. Yu Yurkov, M. S. Korobov, et al., Acta materialia, Vol. 53, 2005, pp. 1407-1413. doi:10.1016/j.actamat.2004.11.033
[9] S. P. Gubin, G. Yu. Yurkov and N. A. Kataeva, Inorganic Materials, Vol. 41, 2005, pp. 1017-1032. doi:10.1007/s10789-005-0255-1
[10] A. N. Rybjanets, O. N. Razumovskaja, L. A. Reznitchenko, V. D. Komarov and A. V. Turik, Integrated Ferroelectrics, Vol. 63, 2004, pp. 197-200. doi:10.1080/10584580490459468
[11] Т. R. Shгоut, W. A. Shulze and J. V. Вiggегs, Materials Research Bulletin, Vol. 14, 1979, pp. 1553-1559.
[12] A. N. Rybyanets, IEEE UFFC, Vol. 58, 2011, pp. 1492-1507.
[13] A. N. Rybyanets and A. A. Rybyanets, IEEE UFFC, Vol. 58, 2011, pp. 1757-1774. doi:10.1109/TUFFC.2011.2013
[14] “IEEE Standard on Piezoelectricity,” ANSI/IEEE Std., 1987, p. 176.
[15] M. Alguero, C. Alemany, L. Pardo and A. M. Gonzalez, Journal of the American Ceramic Society, Vol. 87, 2004, pp. 209-212. doi:10.1111/j.1551-2916.2004.00209.x
[16] R. Holland, IEEE Transaction on Sonics Ultrason, Vol. SU-14, 1967, pp. 18-24. doi:10.1109/T-SU.1967.29405
[17] S. Sherrit, H. D. Wiederick and B. K. Mukherjee, Ferroelectrics, Vol. 134, 1992, pp. 111-115. doi:10.1080/00150199208015574
[18] S. Sherrit, H. D. Wiederick and B. K. Mukherjee, SPIE Proceedinqs of Ultrasonic Transducer Engineerinq, Vol. 3037, 1997, pp. 158-163. doi:10.1117/12.271326
[19] S. Sherrit, H. D. Wiederick and B. K. Mukherjee, SPIE Proceedings of Smart Materials, Structures, and Integrated Svstems, Vol. 3241, 1997, pp. 327-333.
[20] J. G. Smits, IEEE Transactions on Sonics and Ultrasonics, Vol. SU-23, 1976, pp. 393-402. doi:10.1109/T-SU.1976.30898
[21] PRAP, “Piezoelectric Resonance Analysis Program,” TASI Technical Software Inc.
[22] A. N. Rybianets and A. V. Nasedkin, Ferroelectrics, Vol. 360, 2007, pp. 57-62. doi:10.1080/00150190701516020
[23] A. N. Rybianets and R. Tasker, Ferroelectrics, Vol. 360, 2007, pp. 90-95. doi:10.1080/00150190701516228
[24] S. A. Turik, L. A. Reznitchenko, A. N. Rybjanets, S. I. Dudkina, A. V. Turik and A. A. Yesis, Journal of Applied Physics, Vol. 97, 2005, Article ID: 064102. doi:10.1063/1.1861965
[25] A. V. Turik, A. I. Chernobabov, G. S. Radchenko and S. A. Turik, Journal of Physics C: Solid State Physics, Vol. 46, 2004, pp. 2139-2142.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.