Comparison of Pine Needles and Mosses as Bio-Indicators for Polycyclic Aromatic Hydrocarbons


Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants known to be hazardous to human health. Pine needles and mosses are useful bio-indicators for assessing PAH pollutions; however, the differences in their PAH uptake mechanisms have not been sufficiently discussed. In this study, the properties of pine needles and mosses as bio-indicators of PAHs were investigated on the basis of differences in their PAH profiles. Five sets each of pine needle and moss samples were collected from circular sampling plots and analyzed for 16 PAHs. A comparison of PAH profiles revealed that the proportion of lower molecular weight PAHs (2 - 3 aromatic rings; LMW PAHs) was significantly higher in pine needles (78.5% ± 4.8%) than in mosses (35.4% ± 6.8%). In contrast, the proportion of higher molecular weight PAHs (5 - 6 aromatic rings; HMW PAHs) was lower in pine needles (4.3% ± 2.9%) than in mosses (25.1% ± 3.3%). Further, the combination of PAH isomer ratios showed that PAH sources between pine needles and mosses were not the same. These differences were explained by their uptake mechanisms and partly by the absorption of PAHs from soil particles by mosses. These findings indicate that pine needles are useful for assessing airborne LMW PAH pollution, whereas mosses can be integrated indicators for assessing complex HMW PAH pollution of the atmospheric and soil environments. On the basis of these properties, the usefulness of these bio-indicators should also be evaluated according to the objective of the assessment and the areas where they are applied.

Share and Cite:

Y. Oishi, "Comparison of Pine Needles and Mosses as Bio-Indicators for Polycyclic Aromatic Hydrocarbons," Journal of Environmental Protection, Vol. 4 No. 8A, 2013, pp. 106-113. doi: 10.4236/jep.2013.48A1013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. Maliszewska-Kordybach, “Sources, Concentrations, Fate and Effects of Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment. Part A: PAHs in Air,” Polish Journal of Environmental Studies, Vol. 8, No. 3, 1999, pp. 131-136.
[2] A. M. Mastral and M. S. Callén, “A Review on Polycyclic Aromatic Hydrocarbon (PAH) Emission from Energy Generation,” Environmental Science & Technology, Vol. 34, No. 15, 2000, pp. 3051-3057. doi:10.1021/es001028d
[3] M. T. Piccardo, M. Pala, B. Bonaccurso, A. Stella, A. Redaelli, G. Paola and F. Valério, “Pinus nigra and Pinus pinaster Needles as Passive Samplers of Polycyclic Aromatic Hydrocarbons,” Environmental Pollution, Vol. 133, No. 2, 2005, pp. 293-301. doi:10.1016/j.envpol.2004.05.034
[4] E. Aas, J. Beyer, G. Jonsson, W. L. Reichert and O. K. Andersen, “Evidence of Uptake, Biotransformation and DNA Binding of Polyaromatic Hydrocarbons in Atlantic Cod and Corkwing Wrasse Caught in the Vicinity of an Aluminium Works,” Marine Environmental Research, Vol. 52, No. 3, 2001, pp. 213-229. doi:10.1016/S0141-1136(00)00269-5
[5] J. F. Pankow, “Review and Comparative Analysis of the Theories on Partitioning between the Gas and Aerosol Particulate Phases in the Atmosphere,” Atmospheric Environment, Vol. 21, No. 11, 1987, pp. 2275-2283. doi:10.1016/0004-6981(87)90363-5
[6] T. F. Bidleman, “Atmospheric Processes. Wet and Dry Deposition of Organic Compounds Are Controlled by Their Vapor-Particle Partitioning,” Environmental Science & Technology, Vol. 22, No. 4, 1988, pp. 361-367. doi:10.1021/es00169a002
[7] X. Liu, G. Zhang, K. C. Jones, X. Li, X. Peng and S. Qi, “Compositional Fractionation of Polycyclic Aromatic Hydrocarbons (PAHs) in Mosses (Hypnum plumaeformae WILS.) from the Northern Slope of Nanling Mountains, South China,” Atmospheric Environment, Vol. 39, No. 30, 2005, pp. 5490-5499. doi:10.1016/j.atmosenv.2005.05.048
[8] Z. Wang, J. W. Chen, P. Yang, F. L. Tian, X. L. Qiao, H. T. Bian and L. K. Ge, “Distribution of PAHs in Pine (Pinus thunbergii) Needles and Soils Correlates with Their Gas-Particle Partitioning,” Environmental Science & Technology, Vol. 43, No. 5, 2009, pp. 1336-1341. doi:10.1021/es802067e
[9] Z. Wang, X. Ma, G. Na, Z. Lin, Q. Ding and Z. Yao, “Correlations between Physicochemical Properties of PAHs and Their Distribution in Soil, Moss and Reindeer Dung at Ny-Alesund of the Arctic,” Environmental Pollution, Vol. 157, No. 11, 2009, pp. 3132-3136. doi:10.1016/j.envpol.2009.05.014
[10] S. L. Simonich and R. A. Hites, “Organic Pollutant Accumulation in Vegetation,” Environmental Science & Technology, Vol. 29, No. 12, 1995, pp. 2905-2914. doi:10.1021/es00012a004
[11] J. Klánová, P. Cupr, D. Baráková, Z. Seda, P. Anděl and I. Holoubek, “Can Pine Needles Indicate Trends in the Air Pollution Levels at Remote Sites?” Environmental Pollution, Vol. 157, No. 12, 2009, pp. 3248-3254. doi:10.1016/j.envpol.2009.05.030
[12] E. Lehndorff and L. Schwark, “Biomonitoring Airborne Parent and Alkylated Three-Ring PAHs in the Greater Cologne Conurbation I: Temporal Accumulation Patterns,” Environmental Pollution, Vol. 157, No. 4, 2009, pp. 1323-1331. doi:10.1016/j.envpol.2008.11.037
[13] N. Ratola, J. M. Amigo and A. Alves, “Levels and Sources of PAHs in Selected Sites from Portugal: Biomonitoring with Pinus pinea and Pinus pinaster Needles,” Archives of Environmental Contamination and Toxicology, Vol. 58, No. 3, 2010, pp. 631-647. doi:10.1007/s00244-009-9462-0
[14] N. Ratola, A. Alves and E. Psillakis, “Biomonitoring of Polycyclic Aromatic Hydrocarbons Contamination in the Island of Crete Using Pine Needles,” Water, Air, & Soil Pollution, Vol. 215, No. 1-4, 2011, pp. 189-203. doi:10.1007/s11270-010-0469-y
[15] P. Tremolada, V. Burnett, D. Calamari and K. C. Jones, “Spatial Distribution of PAHs in the UK Atmosphere Using Pine Needles,” Environmental Science & Technology, Vol. 30, No. 12, 1996, pp. 3570-3577. doi:10.1021/es960269b
[16] S. Augusto, C. Máguas, J. Matos, M. J. Pereira, A. Soares and C. Branquinho, “Spatial Modeling of PAHs in Lichens for Fingerprinting of Multisource Atmospheric Pollution,” Environmental Science & Technology, Vol. 43, No. 20, 2009, pp. 7762-7769. doi:10.1021/es901024w
[17] S. Augusto, C. Máguas, J. Matos, M. J. Pereira and C. Branquinho, “Lichens as an Integrating Tool for Monitoring PAH Atmospheric Deposition: A Comparison with Soil, Air and Pine Needles,” Environmental Pollution, Vol. 158, No. 2, 2010, pp. 483-489. doi:10.1016/j.envpol.2009.08.016
[18] M. Blasco, C. Domeno and C. Nerín, “Use of Lichens as Pollution Biomonitors in Remote Areas: Comparison of PAHs Extracted from Lichens and Atmospheric Particles Sampled in and around the Somport Tunnel (Pyrenees),” Environmental Science & Technology, Vol. 40, No. 20, 2006, pp. 6384-6391. doi:10.1021/es0601484
[19] M. Blasco, C. Domeno and C. Nerín, “Lichens Biomonitoring as Feasible Methodology to Assess Air Pollution in Natural Ecosystems: Combined Study of Quantitative PAHs Analyses and Lichen Biodiversity in the Pyrenees Mountains,” Analytical and Bioanalytical Chemistry, Vol. 391, No. 3, 2008, pp. 759-771. doi:10.1007/s00216-008-1890-6
[20] A. Galuszka, “Distribution Patterns of PAHs and Trace Elements in Mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from Different Forest Communities: A Case Study, South-Central Poland,” Chemosphere, Vol. 67, No. 7, 2007, pp. 1415-1422. doi:10.1016/j.chemosphere.2006.10.010
[21] R. Gerdol, L. Bragazza, R. Marchesini, A. Medici, P. Pedrini, S. Benedetti, A. Bovolenta and S. Coppi, “Use of Moss (Tortula muralis Hedw.) for Monitoring Organic and Inorganic Pollution in Urban and Rural Sites in Northern Italy,” Atmospheric Environment, Vol. 36, No. 25, 2002, pp. 4069-4075. doi:10.1016/S1352-2310(02)00298-4
[22] I. Holoubek, P. Korínek, Z. Seda, E. Schneiderová, I. Holoubková, A. Pacl, J. Tríska, P. Cudlín and J. Cáslavsky, “The Use of Mosses and Pine Needles to Detect Persistent Organic Pollutants at Local and Regional Scales,” Environmental Pollution, Vol. 109, No. 2, 2000, pp. 283-292. doi:10.1016/S0269-7491(99)00260-2
[23] V. Krommer, H. G. Zechmeister, I. Roder, S. Scharf and A. Hanus-Illnar, “Monitoring Atmospheric Pollutants in the Biosphere Wienerwald by a Combined Approach of Biomonitoring Methods and Technical Measurements,” Chemosphere, Vol. 67, No. 10, 2007, pp. 1956-1966. doi:10.1016/j.chemosphere.2006.11.060
[24] E. Otvos, I. O. Kozák, K. Fekete, V. K. Sharma and Z. Tuba, “Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons (PAHs) in Mosses (Hypnum cupressiforme) in Hungary,” Science of the Total Environment, Vol. 330, No. 1-3, 2004, pp. 89-99. doi:10.1016/j.scitotenv.2004.02.019
[25] N. Skert, J. Falomo, L. Giorgini, A. Acquavita, L. Capriglia, R. Grahonja and N. Miani, “Biological and Artificial Matrixes as PAH Accumulators: An Experimental Comparative Study,” Water, Air, & Soil Pollution, Vol. 206, No. 1-4, 2010, pp. 95-103. doi:10.1007/s11270-009-0089-6
[26] Z. M. Migaszewski, A. Galuszka and P. Paslawski, “Polynuclear Aromatic Hydrocarbons, Phenols, and Trace Metals in Selected Soil Profiles and Plant Bioindicators in the Holy Cross Mountains, South-Central Poland,” Environment International, Vol. 28, No. 4, 2002, pp. 303-313. doi:10.1016/S0160-4120(02)00039-9
[27] R Development Core Team, “R: A Language and Environment for Statistical Computing,” R Foundation for Statistical Computing, Vienna, 2012.
[28] T. D. Bucheli, F. Blum, A. Desaules and O. Gustafsson, “Polycyclic Aromatic Hydrocarbons, Black Carbon, and Molecular Markers in Soils of Switzerland,” Chemosphere, Vol. 56, No. 11, 2004, pp. 1061-1076. doi:10.1016/j.chemosphere.2004.06.002
[29] M. B. Yunker, R. W. Macdonald, R. Vingarzan, R. H. Mitchell, D. Goyette and S. Sylvestre, “PAHs in the Fraser River Basin: A Critical Appraisal of PAH Ratios as Indicators of PAH Source and Composition,” Organic Geochemistry, Vol. 33, No. 4, 2002, pp. 489-515. doi:10.1016/S0146-6380(02)00002-5
[30] H.-M. Hwang, T. L. Wade and J. L. Sericano, “Concentrations and Source Characterization of Polycyclic Aromatic Hydrocarbons in Pine Needles from Korea, Mexico and United States,” Atmospheric Environments, Vol. 37, No. 16, 2003, pp. 2259-2267. doi:10.1016/S1352-2310(03)00090-6
[31] X. L. Zhang, S. Tao, W. X. Liu, Y. Yang, Q. Zuo and S. Z. Liu, “Source Diagnostics of Polycyclic Aromatic Hydrocarbons Based on Species Ratios: A Multimedia Approach,” Environmental Science & Technology, Vol. 39, No. 23, 2005, pp. 9109-9114. doi:10.1021/es0513741
[32] A. Navarro-Ortega, N. Ratola, A. Hildebrandt, A. Alves, S. Lacorte and D. Barceló, “Environmental Distribution on PAHs in Pine Needles, Soils and Sediments,” Environmental Science & Technology, Vol. 19, No. 3, 2012, pp. 677-688. doi:10.1007/s11356-011-0610-5
[33] M. Howsam, K. C. Jones and P. Ineson, “PAHs Associated with the Leaves of Tree Species. I—Concentrations and Profiles,” Environmental Pollution, Vol. 108, No. 3, 2000, pp. 413-424. doi:10.1016/S0269-7491(99)00195-5
[34] V. A. Jouraeva, D. L. Johnson, J. P. Hasset and D. J. Nowak, “Differences in Accumulation of PAHs and Metals on the Leaves of Tilia x euchlora and Pyrus calleryana,” Environmental Pollution, Vol. 120, No. 2, 2002. pp. 331-338. doi:10.1016/S0269-7491(02)00121-5
[35] J. Niu, J. Chen, D. Martens, X. Quan, F. Yang, A. Kettrup and K. Schramm, “Photolysis of Polycyclic Aromatic Hydrocarbons Adsorbed on Spruce [Picea abies (L.) Karst.] Needles under Sunlight Irradiation,” Environmental Pollution, Vol. 123, No. 1, 2003, pp. 39-45. doi:10.1016/S0269-7491(02)00362-7
[36] D. Wang, J. Chen, Z. Xu, X. Qiao and L. Huang, “Disappearance of Polycyclic Aromatic Hydrocarbons Sorbed on Surfaces of Pine [Pinua thunbergii] Needles under Irradiation of Sunlight: Volatilization and Photolysis,” Atmospheric Environment, Vol. 39, No. 25, 2005, pp. 4583-4591. doi:10.1016/j.atmosenv.2005.04.008
[37] W. Thomas, “Representativity of Mosses as Biomonitor Organisms for the Accumulation of Environmental Chemicals in Plants and Soils,” Ecotoxicology and Environmental Safety, Vol. 11, No. 3, 1986, pp. 339-346. doi:10.1016/0147-6513(86)90106-5
[38] E. Lehndorff and L. Schwark, “Biomonitoring of Air Quality in the Cologne Conurbation Using Pine Needles as a Passive Sampler—Part II: Polycyclic Aromatic Hydrocarbons (PAH),” Atmospheric Environments, Vol. 38, No. 23, 2004, pp. 3793-3808. doi:10.1016/j.atmosenv.2004.03.065
[39] Z. M. Migaszewski, A. Galuszka, J. G. Crock, P. J. Lamothe and S. Dolegowska, “Interspecies and Interregional Comparisons of the Chemistry of PAHs and Trace Elements in Mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from Poland and Alaska,” Atmospheric Environment, Vol. 43, No. 7, 2009, pp. 1464-1473. doi:10.1016/j.atmosenv.2008.11.035
[40] A. Klos, M. Czora, M. Rajfur and M. Waclawek, “Mechanisms for Translocation of Heavy Metals from Soil to Epigeal Mosses,” Water, Air, & Soil Pollution, Vol. 223, No. 4, 2012, pp. 1829-1836. doi:10.1007/s11270-011-0987-2
[41] A. Bozlaker, A. Muezzinoglu and M. Odabasi, “Atmospheric Concentrations, Dry Deposition and Air-Soil Exchange of Polycyclic Aromatic Hydrocarbons (PAHs) in an Industrial Region in Turkey,” Journal of Hazardous Materials, Vol. 153, No. 3, 2008, pp. 1093-1102. doi:10.1016/j.jhazmat.2007.09.064

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.