Linde Type a Zeolite and Type Y Faujasite as a Solid-Phase for Lead, Cadmium, Nickel and Cobalt Preconcentration and Determination Using a Flow Injection System Coupled to Flame Atomic Absorption Spectrometry


In this work, a flow injection analysis (FIA) method for the trace determination of lead, cadmium, nickel and cobalt in natural waters by formation of neutral chelates with ammonium pyrrolidine dithiocarbamate (APDC) was developed. The neutral chelates formed was retained in a mini-column packed with Linde type A zeolite (LTA) and type Y Faujasite zeolite (FAU) and then eluted with methyl isobutyl ketone (MIBK) to flame atomic absorption spectrometry (EAA) for its detection. Physicochemical characterization of this zeolite was carried out by Fourier Transform infrared spectroscopy and attenuated total reflectance (FTIR and IR-ATR), scanning electron microscopy and energy dispersive X-ray microanalysis (SEM-EDX) and X-ray power diffraction (XRD). Then, a FIA configuration was used with a column preconcentration system coupled to the detection system at room temperature (22?C). The detection limit and the relative standard deviation for 5 determinations of different solutions of Pb2+, Co2+, Ni2+ and Cd2+ for FAU and LTA zeolite were calculated. The sampling frequency ranged from 18-35 h-1 and preconcentration factors from 21-250 were achieved, for a sample volume of 6 mL using 20 mg of sorbents, indicating a high retention of the analytes on the zeolites material. The recoveries obtained in natural waters samples were close to 100% for all ions metal using synthetic zeolites, confirming the applicability of the method. The isotherm models of Langmuir, Scatchard, Freundlich and Dubinin-Radushkevich were used to study the equilibrium data, indicating that successfully followed the Freundlich and Dubinin-Radushkevich (D-R) isotherms at low metal ion concentration. The Freundlich parameter n varied between 0.35-1.01, whereas D-R isotherm yields the sorption free energy E < 8 kJ.mol-1 indicating psysisorption.

Share and Cite:

Y. Peña and W. Rondón, "Linde Type a Zeolite and Type Y Faujasite as a Solid-Phase for Lead, Cadmium, Nickel and Cobalt Preconcentration and Determination Using a Flow Injection System Coupled to Flame Atomic Absorption Spectrometry," American Journal of Analytical Chemistry, Vol. 4 No. 8, 2013, pp. 387-397. doi: 10.4236/ajac.2013.48049.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. R. Nabid, R. Sedghi, A. Bagheri, M. Behbahani, M. Taghizadeh, H. Abdi Oskooie and M. M. Heravi, “Preparation and Application of Poly(2-aminothiophenol)/ MWCNTs Nanocomposite for Adsorption and Separation of Cadmium and Lead Ions via Solid Phase Extraction,” Journal of Hazardous Materials, Vol. 203-204, 2012, pp. 93-100. doi:10.1016/j.jhazmat.2011.11.096
[2] G. Cheng, M. He, H. Peng and B. Hu, “Dithizone Modified Magnetic Nanoparticles for Fast and Selective Solid Phase Extraction of Trace Elements in Environmental and Biological Samples Prior to Their Determination by ICPOES,” Talanta, Vol. 88, 2012, pp. 507-515. doi:10.1016/j.talanta.2011.11.025
[3] I. Sánchez Trujillo, E. Vereda Alonso, A. García de Torres and J. M. Cano Pavón, “Development of a Solid Phase Extraction Method for the Multielement Determination of Trace Metals in Natural Waters Including Sea-Water by FI-ICP-MS,” Microchemical Journal, Vol. 101, 2012, pp. 87-94. doi:10.1016/j.microc.2011.11.003
[4] M. Jamshidi, M. Ghaedi, K. Mortazavi, M. N. Biareh and M. Soylak, “Determination of Some Metal Ions by FlameAAS after Their Preconcentration Using Sodium Dodecyl Sulfate Coated Alumina Modified with 2-hydroxy-(3-((1-H-indol 3-yle)phenyl) methyl) 1-H-indol (2-HIYPMI),” Food and Chemical Toxicology, Vol. 49, No. 6, 2011, pp. 1229-1234. doi:10.1016/j.fct.2011.02.025
[5] A. P. S. Gonzáles, M. A. Firmino, C. S. Nomura, F. R. P. Rocha, P. V. Oliveira and I. Gaubeur, “Peat as a Natural Solid-Phase for Copper Preconcentration and Determination in a Multicommuted Flow System Coupled to Flame Atomic Absorption Spectrometry,” Analytica Chimica Acta, Vol. 636, No. 2, 2009, pp. 198-204. doi:10.1016/j.aca.2009.01.047
[6] S. Samadi, H. Sereshti and Y. Assadi, “Ultra-Preconcentration and Determination of Thirteen Organophosphorus Pesticides in Water Samples Using Solid-Phase Extraction Followed by Dispersive Liquid-Liquid Microextraction and Gas Chromatography with Flame Photometric Detection,” Journal of Chromatography A, Vol. 1219, 2012, pp. 61-65. doi:10.1016/j.chroma.2011.11.019
[7] C. Duran, D. Ozdes, D. Sahin, V. N. Bulut, A. Gundogdu and M. Soylak, “Preconcentration of Cd(II) and Cu(II) Ions by Coprecipitation without Any Carrier Element in Some Food and Water Samples,” Microchemical Journal, Vol. 98, No. 2, 2011, pp. 317-322. doi:10.1016/j.microc.2011.02.018
[8] M. Chamsaz, A. Atarodi, M. Eftekhari, S. Asadpour and M. Adibi, “Vortex-Assisted Ionic Liquid Microextraction Coupled to Flame Atomic Absorption Spectrometry for Determination of Trace Levels of Cadmium in Real Samples,” Journal of Advanced Research, Vol. 4, 2013, pp. 35-41. doi:10.1016/j.jare.2011.12.002
[9] S. Z. Mohammadi, H. Hamidian, L. Karimzadeh and Z. Moeinadini, “Tween 80 Coated Alumina: An Alternative Support for Solid Phase Extraction of Copper, Nickel, Cobalt and Cadmium Prior to Flame Atomic Absorption Spectrometric Determination,” Arabian Journal of Chemistry, in Press, 2012. doi:10.1016/j.arabjc.2012.02.002
[10] R. Dobrowolski and M. Otto, “Determination of Nickel and Cobalt in Reference Plant Materials by Carbon Slurry Sampling GFAAS Technique after Their Simultaneous Preconcentration onto Modified Activated Carbon,” Journal of Food Composition and Analysis, Vol. 26, No. 1-2, 2012, pp. 58-65. doi:10.1016/j.jfca.2012.03.002
[11] S. Walas, A. Tobiasz, M. Gawin, B. Trzewik, M. Strojny and H. Mrowiec, “Application of a Metal Ion-Imprinted Polymer Based on Salen-Cu Complex to Flow Injection Preconcentration and FAAS Determination of Copper,” Talanta, Vol. 76, 2008, pp. 96-101. doi:10.1016/j.talanta.2008.02.008
[12] B. D. Koleva and E. Ivanova, “Flow Injection Analysis with Atomic Spectrometric Detection (Review Article),” Eurasian Journal of Analytical Chemistry, Vol. 3, No. 2, 2008, pp. 183-211.
[13] L. Elci, A. A. Kartal and M. Soylak, “Solid Phase Extraction Method for the Determination of iron, Lead and Chromium by Atomic Absorption Spectrometry Using Amberite XAD-2000 Column in Various Water Samples,” Journal of hazardous materials, Vol. 153, No. 1-2, 2008, pp. 454-461. doi:10.1016/j.jhazmat.2007.08.075
[14] F. Marahel, M. Ghaedi, M. Montazerozohori, M. Nejati Biyareh, S. Nasiri Kokhdan and M. Soylak, “Solid-Phase Extraction and Determination of Trace Amount of Some Metal Ions on Duolite XAD 761 Modified with a New Schiff Base as Chelating Agent in Some Food Samples,” Food and Chemical Toxicology, Vol. 49, 2011, pp. 208-214. doi:10.1016/j.fct.2010.10.018
[15] H.-T. Fan, J. Li, Z.-C. Li and T. Sun, “An Ion-Imprinted Amino-Functionalized Silica Gel Sorbent Prepared by Hydrothermal Assisted Surface Imprinting Technique for Selective Removal of Cadmium (II) from Aqueous Solution,” Applied Surface Science, Vol. 258, No. 8, 2012, pp. 3815-3822. doi:10.1016/j.apsusc.2011.12.035
[16] A. Bartyzel and E. M. Cukrowska, “Solid Phase Extraction Method for the Separation and Determination of Chromium(III) in the Presence of Chromium(VI) Using Silica Gel Modified by N,N-bis-(α-methylsalicylidene)-2,2-dimethyl-1,3-propanediimine,” Analytica Chimica Acta, Vol. 707, No. 1-2, 2011, pp. 204-209. doi:10.1016/j.aca.2011.09.023
[17] J. N. Bianchin, E. Martendal, R. Mior, V. N. Alves, C. S. T. Araújo, N. M. M. Coelho and E. Carasek, “Development of a Flow System for the Determination of Cadmium in Fuel Alcohol Using Vermicompost as Biosorbent and Flame Atomic Absorption Spectrometry,” Talanta, Vol. 78, No. 2, 2009, pp. 333-336. doi:10.1016/j.talanta.2008.11.012
[18] M. Ahmad, A. R. A. Usman, S. S. Lee, S.-C. Kim, J.-H. Joo, J. E. Yang and Y. S. Ok, “Eggshell and Coral Wastes as Low Cost Sorbents for the Removal of Pb2+, Cd2+ and Cu2+ from Aqueous Solutions,” Journal of Industrial and Engineering Chemistry, Vol. 18, 2012, pp. 198-204. doi:10.1016/j.jiec.2011.11.013
[19] A. Tobiasz, S. Walas, A. Soto Hernández and H. Mrowiec, “Application of Multiwall Carbon Nanotubes Impregnated with 5-Dodecylsalicylaldoxime for On-Line Copper Preconcentration and Determination in Water Samples by Flame Atomic Absorption Spectrometry,” Talanta, Vol. 96, 2012, pp. 89-95. doi:10.1016/j.talanta.2011.12.008
[20] R. S. Amais, J. S. Ribeiro, M. G. Segatelli, I. V. P. Yoshida, P. O. Luccas and C. R. T. Tarley, “Assessment of Nanocomposite Alumina Supported on Multi-Wall Carbon Nanotubes as Sorbent for On-Line Nickel Preconcentration in Water Samples,” Separation and Purification Technology, Vol. 58, 2007, pp. 122-128. doi:10.1016/j.seppur.2007.07.024
[21] Y. P. d. Pena, W. López, J. L. Burguera, M. Burguera, M. Gallignani, R. Brunetto, P. Carrero, C. Rondon and F. Imbert, “Synthetic Zeolites as Sorbent Material for OnLine Preconcentration of Copper Traces and Its Determination Using Flame Atomic Absorption Spectrometry,” Analytica Chimica Acta, Vol. 403, No. 1-2, 2000, pp. 249-258.
[22] D. Afzali, A. Mostafavi, M. A. Taher and A. Moradian, “Flame Atomic Absorption Spectrometry Determination of Trace Amounts of Copper after Separation and Preconcentration onto TDMBAC-Treated Analcime Pyrocatechol-Immobilized,” Talanta, Vol. 71, No. 2, 2007, pp. 971-975. doi:10.1016/j.talanta.2006.05.012
[23] V. M. Nurchi and I. Villaescusa, “Sorption of Toxic Metal Ions by Solid Sorbents: A Predictive Speciation Approach Based on Complex Formation Constants in Aqueous Solution,” Coordination Chemistry Reviews, Vol. 256, No. 1-2, 2012, pp. 212-221. doi:10.1016/j.ccr.2011.09.002
[24] A. O. Martins, E. L. da Silva, E. Carasek, N. S. Goncalves, M. C. M. Laranjeira and V. T. de Fávere, “Chelating Resin from Functionalization of Chitosan with Complexing Agent 8-Hydroxyquinoline: Application for Metal Ions on Line Preconcentration System,” Analytica Chimica Acta, Vol. 521, No. 2, 2004, pp. 157-162. doi:10.1016/j.aca.2004.06.033
[25] D. Afzali, A. Mostafavi, F. Etemadi and A. Ghazizadeh, “Application of Modified Multiwalled Carbon Nanotubes as Solid Sorbent for Separation and Preconcentration of Trace Amounts of Manganese Ions,” Arabian Journal of Chemistry, Vol. 5, No. 2, 2012, pp. 187-191. doi:10.1016/j.arabjc.2010.08.012
[26] A. N. Anthemidis, G. Giakisikli, S. Xidia and M. Miró, “On-Line Sorptive Preconcentration Platform Incorporating a Readily Exchangeable Oasis HLB Extraction Micro-Cartridge for Trace Cadmium and Lead Determination by Flow Injection-Flame Atomic Absorption Spectrometry,” Microchemical Journal, Vol. 98, 2011, pp. 66-71. doi:10.1016/j.microc.2010.11.007
[27] Y. Petit de Pena, B. Paredes, W. Rondón, M. Burguera, J. L. Burguera, C. Rondón, P. Carrero and T. Capote, “Continuous Flow System for Lead Determination by Faas in Spirituous Beverages with Solid Phase Extraction and On-Line Copper Removal,” Talanta, Vol. 64, No. 5, 2004, pp. 1351-1358. doi:10.1016/j.talanta.2004.05.053
[28] C. Baerlocher and L. B. McCusker, “Database of Zeolite Structures,” 2013.
[29] M. Al-Anber and Z. A. Al-Anber, “Utilization of Natural zeolite as Ion-Exchange and Sorbent Material in the Removal of Iron,” Desalination, Vol. 225, No. 1-3, 2008, pp. 70-81. doi:10.1016/j.desal.2007.07.006
[30] O. L. Corona, M. A. Hernández, F. Hernández, F. Rojas, R. Portillo, V. H. Lara and F. M. Carlos, “Propiedades de Adsorción en Zeolitas con Anillos de 8 Miembros: I. Microporosidad y Superficie Externa,” Matéria (Río J.), Vol. 14, No. 3, 2009, pp. 918-931.
[31] C. R. Melo, H. G. Riella, N. C. Kuhnen, E. Angioletto, A. R. Melo, A. M. Bernardin, M. R. da Rocha and L. da Silva, “Synthesis of 4A Zeolites from Kaolin for Obtaining 5A Zeolites through Ionic Exchange for Adsorption of Arsenic,” Materials Science and Engineering B, Vol. 177, No. 4, 2012, pp. 345-349. doi:10.1016/j.mseb.2012.01.015
[32] F. E. Imbert, C. Moreno, A. Montero, B. Fontal and J. Lujano, “Venezuelan Natural Alumosilicates as a Feedstock in the Synthesis of Zeolite A,” Zeolites, Vol. 14, No. 5, 1994, pp. 374-378. doi:10.1016/0144-2449(94)90112-0
[33] JCPDS, “PDF-2 Database ICDD,” Newton Square, 2001.
[34] Y. M. Liew, H. Kamarudin, A. M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, C. M. Ruzaidi and C. Y. Heah, “Processing and Characterization of Calcined Kaolin Cement Powder,” Construction and Building Materials, Vol. 30, 2012, pp. 794-802. doi:10.1016/j.conbuildmat.2011.12.079
[35] R. T. Rigo, S. B. C. Pergher, D. I. Petkowicz and J. H. Z. d. Santos, “A New Procedure for a Zeolite Synthesis from Natural Clays,” Química Nova, Vol. 32, No. 2009, pp. 21-25.
[36] T. Frising and P. Leflaive, “Extraframework Cation Distributions in X and Y Faujasite Zeolites: A Review,” Microporous and Mesoporous Materials, Vol. 114, No. 1-3, 2008, pp. 27-63. doi:10.1016/j.micromeso.2007.12.024
[37] M. Tuzen, K. Parlar and M. Soylak, “Enrichment/Separation of Cadmium(II) and Lead(II) in Environmental Samples by Solid Phase Extraction,” Journal of Hazardous Materials, Vol. 121, No. 1-3, 2005, pp. 79-87. doi:10.1016/j.jhazmat.2005.01.015
[38] O. Gezici, H. Kara, A. Ayar and M. Topkafa, “Sorption Behavior of Cu(II) Ions on Insolubilized Humic Acid under Acidic Conditions: An Application of Scatchard Plot Analysis in Evaluating the pH Dependence of Specific and Nonspecific Bindings,” Separation and Purification Technology, Vol. 55, 2007, pp. 132-139. doi:10.1016/j.seppur.2006.11.012
[39] O. Gezici, H. Kara, M. Ersoz and Y. Abali, “The Sorption Behavior of a Nickel-Insolubilized Humic Acid System in a Column Arrangement,” Journal of Colloid and Interface Science, Vol. 292, No. 2, 2005, pp. 381-391. doi:10.1016/j.jcis.2005.06.009

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.