Desirability of a standard notation for fisheries assessment

Abstract

The worldwide increase of the publications concerning the assessment of marine renewable living resources is highlighting long-standing problems with symbols and annotations. Starting from the symbols presented within the classic fisheries masterpieces produced, mainly in the fifty of the last century, a first “Milestone” list was organised. Thereafter, the pertinent literature was (not exhaustively) browsed in order to integrate this Milestone list on the base of a set of decisional criteria. The present contribution consists in using the Latin letters as well established symbols for the corresponding parameters, leaving free to specific use (with few historical exceptions) the Greek letters in view to open a discussion among all the fisheries scientists and bodies in order to move towards a common language and better communication standards.

Share and Cite:

Ragonese, S. and Vitale, S. (2013) Desirability of a standard notation for fisheries assessment. Agricultural Sciences, 4, 399-432. doi: 10.4236/as.2013.48057.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Cushing, D.H. (1983) Key papers on fish populations. Irl Press, Oxford.
[2] Smith, T.D. (1988) Stock assessment methods: The first fifty years. In: Gulland, J.A., Ed., Fish Population Dynamics: The Implications for Management, John Wiley and Sons Ltd., Chichester, 1-33.
[3] Saetersdal, G. (1989) Fish resources research and fishery management: A review of nearly a century of experience in the Northeast Atlantic and some recent global perspectives. Journal du Conseil International pour l’Exploration de la Mer, 46, 5-15.
[4] Angelini, R. and Moloney, C.L. (2007) Fisheries, ecology and modelling: An historical perspective. Pan-American Journal of Aquatic Sciences, 2, 75-85.
[5] Beverton, R.J.H. and Holt, S.J. (1956) A review of methods for estimating mortality rates in exploited fish populations, with special reference to sources of bias in catch sampling. Rapports et Procès-Verbaux des RèunI ons Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 140, 67-83.
[6] Beverton, R.J.H. and Holt, S.J. (1957) On the dynamics of exploited fish populations. Ministry of Agriculture, Fisheries and Food, Lowestoft.
[7] Beverton, R.J.H. and Holt, S.J. (1959) A review of the lifespans and mortality rates of fishes in nature, and their relation to growth and other physiological characteristics. In: Wolstenholme, C.E.W. and O’Connor, M., Eds., Ciba Foundation Colloquia on Ageing, J and A Churchill Ltd., London, 142-179.
[8] Gulland, J.A. (1955) On the estimation of growth and mortality in commercial fish population. Fishery Investigations, 18, 46.
[9] Gulland, J.A. (1956) The study of fish populations by the analysis of commercial catches: A statistical review. Rapports Conseil Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 140, 21-27.
[10] Gulland, J.A. (1956) A note on the statistical distribution of trawl catches, in problems and methods of sampling fish populations. Rapports Conseil Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 140, 28-29.
[11] Gulland, J.A. (1962) The application of mathematical models to fish populations. In: Le Cren, E.D. and Holdgate, M.W., Eds., The Exploitation of Natural Animal Populations, Blackwell Scientific Publications, Oxford, 204-217.
[12] Ricker, W.E. (1954) Stock and recruitment. Journal of the Fisheries Research Board of Canada, 11, 559-623. doi:10.1139/f54-039
[13] Ricker, W.E. (1958) Handbook of computations for biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada, 1-300.
[14] Gulland, J.A. (1958) Notations in fish population studies. ICNAF Special Publication, 1, 69-70.
[15] Holt, S.J. (1958) Population dynamics: Devise means of reducing the time required to obtain data necessary for making assessment of stocks, especially those required as the basis for a program of conservation. ICNAF Special Publication, 1, 27-50.
[16] Holt, S.J., Gulland, J.A., Taylor, C. and Kurita, S. (1959) A standard terminology and notation for fishery dynamics. Journal du Conseil International pour l’Exploration de la Mer, 24, 239-242. doi:10.1093/icesjms/24.2.239
[17] IDWG-LUP (1994) Terminology for integrated resources planning and management. In: Choudhury, K. and Jansen, L.J.M., Eds., Integrated Resources Planning and Management, Food and Agriculture Organization, Rome.
[18] Coad, B.W. and McAllister, D.E. (2008) Dictionary of ichthyology. http://www.briancoad.com/dictionary/references.htm
[19] Garcia, S.M. (2009) Glossary. In: Cochrane, K.L. and Garcia, S.M., Eds., A Fishery Manager’s Guidebook, 2nd Edition, Wiley-Blackwell, Hoboken.
[20] NOAA (2010) Definition of fisheries technical term. http://www.nefsc.noaa.gov/techniques/tech_terms.html#ai
[21] Restrepo, V.R. (2000) Glossary of fishery terms. ICCAT Standing Committee on Research and Statistics (SCRS). www.iccat.es
[22] Lleonart, J. (2010) Draft glossary of scientific terms of interest for the SAC General Fisheries Commission for the Mediterranean. Thirty-fourth Session, Athens, 14-17 April 2010, 1-41.
[23] FAO (2011) Glossary. www.fao.org/fi/glossary/default.asp
[24] Gulland, J.A. (1983) Stock assessment: Why? FAO Fisheries Circular, 759.
[25] Hilborn, R. and Walters, C.J. (1992) Quantitative fisheries stock assessment, choice, dynamics and uncertainty. Chapman and Hall, London. doi:10.1007/978-1-4615-3598-0
[26] Kesteven, G.L. (1999) Stock assessments and the management of fishing activities. Fisheries Research, 44, 105-112.
[27] Musick, J.A. and Bonfil, R. (2005) Management techniques for elasmobranch fisheries. FAO Fisheries Technical Paper, 474, 1-251.
[28] Huntsman, A.G. (1953) Fishery management and research. Journal du Conseil International pour l’Exploration de la Mer, 14, 44-55.
[29] ICNAF (1960) The selectivity of fishing gear. Proceedings of the joint scientific meeting of ICNAF, ICES, and FAO on fishing effort, the effect of fishing on resources and the selectivity of fishing gear, Lisbon, 27 May-3 June 1957.
[30] Gulland, J.A. (1969) Manual of methods for fish stock assessment. Part 1. Fish population analysis. FAO Manual Fisheries Science.
[31] Clark, S.H. (1979) Application of bottom-trawl survey data to fish stock assessment. Fisheries, 4, 9-15. doi:10.1577/1548-8446(1979)004<0009:AOBSDT>2.0.CO;2
[32] Caddy, J.F. (2009) Practical issues in choosing a framework for resource assessment and management of Mediterranean and Black Sea fisheries. Mediterranean Marine Science, 10, 83-119. doi:10.12681/mms.124
[33] Beverton, R.J.H. (1953) Some observations on the principles of fishery regulation. Journal du Conseil Permanent International pour l’Exploration de la Mer, 19, 56-68.
[34] Beverton, R.J.H. and Parrish, B.B. (1956) Commercial statistics on fish population studies. Rapports et ProcèsVerbaux des Rèunions Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 140, 58-66.
[35] Holt, S.J. (1958) The evaluation of fisheries resources by the dynamic analysis of stocks, and notes on the time factors involved. ICNAF Special Publication, 1, 77-95.
[36] Holt, S.J. (1963) A method for determining gear selectivity and its application. ICNAF Special Publication, 5, 106-115.
[37] Holt, S.J. (1965) A note on the relation between the mortality rate and the duration of life in an exploited fish population. ICNAF Research Bulletin, 2, 73-75.
[38] Gulland, J.A. (1961) The estimation of the effect on catches of changes in gear selectivity. Journal du Conseil International pour l’Exploration de la Mer, 26, 204-214.
[39] Gulland, J.A. (1964) A note on the interim effects on catches of changes in gear selectivity. Journal du Conseil International pour l’Exploration de la Mer, 29, 61-64.
[40] Gulland, J.A. (1964) Catch per unit effort as a measure of abundance. Rapports et Procès-Verbaux des Rèunions Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 155, 8-14.
[41] Gulland, J.A. (1964) Variations in selection factors and mesh differentials. Journal du Conseil International pour l’Exploration de la Mer, 29, 158-165.
[42] Gulland, J.A. (1967) Further notes on the effect of possible regulatory measures on catches of Greenland cod. ICNAF Redbook, Part III: 34-47.
[43] Gulland, J.A. (1977) Fish population dynamics: The implications for management. Wiley Interscience, New York.
[44] Gulland, J.A. (1983) Fish stock assessment: A manual of basic methods. Wiley Interscience, Chichester.
[45] Gulland, J.A. (1987) Natural mortality and size. Marine Ecology Progress Series, 39, 197-199.
[46] Gulland, J.A. and Holt, S.L. (1959) Estimation of growth parameters for data at unequal time intervals. Journal du Conseil International pour l’Exploration de la Mer, 25, 47-49.
[47] ICNAF (1958) Some problems for biological fishery survey, and techniques for their solution. ICNAF Research Bulletin, 1.
[48] ICNAF (1962) Report of the working group of scientists on fishery assessment in relation to regulation problems. In: Beverton, R.J.H. and Hodder, V.M., Eds., A Proceedings of the International Commission of the NW Atlantic Fisheries, 11, 1-81.
[49] ICNAF (1963) The selectivity of fishing gear. ICNAF Special Publication, 5.
[50] ICNAF (1967) Selected papers from the 1966 annual meeting. Redbook Part III, Dartmouth.
[51] Kesteven, G.K. and Holt, S.J. (1955) A note on the fisheries resources of the north west Atlantic. FAO Fisheries Paper, 7, 1-12.
[52] Ricker, W.E. (1940) Relation of “catch per unit effort” to abundance and rate of exploitation. Journal of the Fisheries Research Board of Canada, 5, 43-70. doi:10.1139/f40-008
[53] Ricker, W.E. (1958) Production, reproduction and yield. Veroffentlichungen Limnologie, 13, 84-100.
[54] Ricker, W.E. (1963) Big effects from small causes: Two examples from fish population dynamics. Journal of the Fisheries Research Board of Canada, 20, 257-264. doi:10.1139/f63-022
[55] Ricker, W.E. (1973) Critical statistics from two reproductive curves. Rapports et Procès-Verbaux des Rèunions Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 164, 333-340.
[56] Ricker, W.E. (1975) Computation and interpretation of biological statistics of fish population. Bulletin of the Fisheries Research Board of Canada, 191.
[57] Ricker, W.E. (1977) The historical development. In: Gulland, J.A., Ed., Fish Population Dynamics: The Implications for Management, Wiley Interscience, New York, 1-26.
[58] Ricker, W.E. (1979) Growth rates and models. In: Hoar, W.S., Randall, D.J. and Brett, J.R., Eds., Fish Physiology, III, Bioenergetics and Growth, Academic Press, New York, 677 743.
[59] William, E. and Ricker, R.E. (1948) Computation of fish production. A Symposium on Fish Populations. Proceedings of the Meeting held at the Royal Ontario Museum of Zoology, Toronto, 10-11 January 1947, 173-211.
[60] Liungman, C.G. (2004) Symbols: Encyclopaedia of western signs and ideograms. 3rd Edition, HME Publishing, Stockholm.
[61] Gjøsæter, H., Bogstad, B. and Tjelmeland, S. (2002) Assessment methodology for Barents Sea capelin, Mallotus villosus (Müller). ICES Journal of Marine Sciences, 59, 1086-1095. doi:10.1006/jmsc.2002.1238
[62] Taylor, C.C. (1958) Cod growth and temperature. Journal du Conseil International pour l’Exploration de la Mer, 23, 366-370.
[63] Marutani, T. (2008) On the optimal path in the dynamic pool model for a fishery. Reviews in Fish Biology and Fisheries, 18, 133-141. doi:10.1007/s11160-007-9065-7
[64] Schnute, J. (1987) A general fishery model for a sizestructured fish population. Canadian Journal of Fisheries and Aquatic Sciences, 44, 924-940. doi:10.1139/f87-111
[65] Quinn, T.J. II and Deriso, R.B. (1999) Quantitative fish dynamics. Oxford University Press, Oxford.
[66] Gayanilo Jr., F.C., Sparre, P. and Pauly, D. (2005) FAOICLARM stock assessment tools II (FiSAT II). User’s guide. FAO Computerized Information Series (Fisheries), 8.
[67] Christie, W.J. and Spangler, G.R. (1987) The international symposium on stock assessment and yield prediction. Canadian Journal of Fisheries and Aquatic Sciences, 44, 501.
[68] Jennings, S., Kaiser, M.J. and Reynolds, J.D. (2001) Marine fisheries ecology. Blackwell Science, Oxford.
[69] Widrig, T.M. (1954) Method of estimating fish populations with application to Pacific sardine. Fishery Bulletin of the United States of America, 56, 141-166.
[70] Hart, P.J.B. and Reynolds. J.D. (2002) Handbook of fish biology and fisheries (1-2). Blackwell Science Ltd., Oxford.
[71] Pauly, D. (1984) Fish populations dynamics in tropical waters. International Center for Living Aquatic Resources Management, Manila.
[72] Pauly, D. and Morgan, G.R. (1987) Length-based methods in fisheries research. International Center for Living Aquatic Resources Management, Manila.
[73] Millar, R.B. and Fryer, R.J. (1999) Estimating size-selection curves of trawls, traps, gillnets, and hooks. Reviews in Fish Biology and Fisheries, 9, 89-116. doi:10.1023/A:1008838220001
[74] Sparre, P. and Venema, S.C. (1998) Introduction to tropical fish stock assessment, Part I: Manual. FAO Fisheries Technical Paper, 306, 1.
[75] Chen, S. and Watanabe, S. (1989) Age dependence of natural mortality coefficient in fish population dynamics. Nippon Suisan Gakkaishi, 55, 205-208. doi:10.2331/suisan.55.205
[76] Laurec, A. and Le Guen, J.C. (1981) Dynamique des population marines exploitées. Publication CNEXO Rapport Scientific et Technologic, 45, 1-111.
[77] Kutty, M.K. and Qasim, S.Z. (1968) The estimation of optimum age of exploitation and potential yield in fish populations. Journal du Conseil International pour l’Exploration de la Mer, 32, 249-255. doi:10.1093/icesjms/32.2.249
[78] Hjort, J., Jahn, G. and Ottestad, P. (1933) The optimum catch. Hvalradets Skrifter, 7, 92-107.
[79] May, R.C. (1974) Larval mortality in marine fishes and the critical period concept. In: Blaxter, J.H.S., Ed., The Early Life History of Fish, Spring-Verlag, Berlin, 3-19. doi:10.1007/978-3-642-65852-5_1
[80] Smith, P.E. (1985) Year-class strength and survival of 0 group clupeoids. Canadian Journal of Fisheries and Aquatic Sciences, 2, 69-82.
[81] Bethke, E. (2004) A simple general approach to codend selectivity of trawls and its application to the data of Fiorentino et al. (1998) for Hake (Merluccius merluccius). Fisheries Research, 70, 113-119. doi:10.1016/j.fishres.2004.05.012
[82] Walters, C., Christensen, V. and Pauly, D. (1997) Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Reviews in Fish Biology and Fisheries, 7, 139-172. doi:10.1023/A:1018479526149
[83] Mertz, G. and Myers, R.A. (1998) A simplified formulation for fish production. Canadian Journal of Fisheries and Aquatic Sciences, 55, 478-484. doi:10.1139/f97-216
[84] Schnute, J.T. and Richards, L.J. (1998) Analytical models for fishery reference points. Canadian Journal of Fisheries and Aquatic Sciences, 55, 515-528. doi:10.1139/f97-212
[85] Pope, J.G. (1977) Estimation of fishing mortality, its precision and implications for the management of fisheries. In: Steele, J.H., Ed., Fisheries Mathematics, Academic Press, London, 63-76.
[86] Megrey, B.A. (1989) Review and comparison of agestructured stock assessment models from theoretical and applied points of view. American Fisheries Society Symposium, 6, 8-48.
[87] Charnov, E.L. (1993) Life history invariants. Some explorations of symmetry in evolutionary ecology. Oxford University Press, Oxford.
[88] Russell, E.S. (1931) Some theoretical consideration on the overfishing problem. Journal du Conseil International pour l’Exploration de la Mer, 6, 3-20.
[89] Tester, A.I. (1955) Estimation of recruitment and natural mortality rate from age-composition and catch data in British Columbia Herring population. Journal of the Fisheries Research Board of Canada, 12, 649-641. doi:10.1139/f55-035
[90] Murphy, G.I. (1960) Estimating abundance from long-line catches. Journal of the Fisheries Research Board of Canada, 17, 33-40. doi:10.1139/f60-003
[91] Taylor, C.C. (1962) Growth equations with metabolic parameters. Journal du Conseil International pour l’Exploration de la Mer, 27, 270-286.
[92] Jones, R. (1977) Tagging: Theoretical methods and practical difficulties. In: Gulland, J.A., Ed., Fish Population Dynamics: The Implications for Management, Wiley Interscience, New York, 46-66.
[93] Baker, T.T., Lafferty, R. and Quinn II, T.J. (1991) A general growth model for mark-recapture data. Fisheries Research, 1, 257-281. doi:10.1016/0165-7836(91)90005-Z
[94] Alverson, D.L. and Pereyra, W.T. (1969) Demersal fish explorations in the north-eastern Pacific Ocean—An evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. Journal of the Fisheries Research Board of Canada, 26, 1985-2001. doi:10.1139/f69-188
[95] Herrington, W.C. (1948) Limiting factors for fish populations. Some theories and an example. A Symposium on Fish Populations. Proceedings of the Meeting Held at the Royal Ontario Museum of Zoology, Toronto, 10-11 January 1947, 229-283.
[96] Schaefer, M.B. (1957) Some considerations of population dynamics and economics in relation to the management of commercial marine fisheries. Journal of the Fisheries Research Board of Canada, 14, 669-681. doi:10.1139/f57-025
[97] Paulik, G.J. (1961) Detection of incomplete reporting of tags. Journal of the Fisheries Research Board of Canada, 18, 817-832. doi:10.1139/f57-025
[98] Paloheimo, J.E. and Dickie, L.M. (1966) Food and growth of fishes. II. Effects of food and temperature on the relation between metabolism and body weight. Journal of the Fisheries Research Board of Canada, 23, 869-908. doi:10.1139/f66-077
[99] Jones, R. and Johnston, C. (1977). Growth, reproduction and mortality in gadoid fish species. In: Steele, J.H., Ed., Fisheries Mathematics, Academic Press, London, 37-62.
[100] Charnov, E.L., Berrigan, D. and Shine, R. (1993) The M/K ratio is the same for fish and reptiles. American Naturalist, 142, 707-711. doi:10.1086/285565
[101] Francis, R.I.C.C. (1988) Are growth parameters estimated from tagging and age-length data comparable? Canadian Journal of Fisheries and Aquatic Sciences, 45, 936-942. doi:10.1139/f88-115
[102] Fournier, D.A., Sibert, J.R., Majkowski, J. and Hampton, J. (1990) MULTIFAN, a likelihood based method for estimating growth parameters and age composition from multiple length frequency data sets illustrated using data for Southern bluefin tuna (T. maccoyii). Canadian Journal of Fisheries and Aquatic Sciences, 47, 301 317. doi:10.1139/f90-032
[103] Yamakawa, T. and Matsuda, H. (1997) Improved bêlehrádek’s equation for a comprehensive description of the relationship between environmental factors and metabolic rates. Fisheries Science, 63, 725-773.
[104] Cadima, E.L. (2003) Fish stock assessment manual. FAO Fisheries Technical Paper, 393.
[105] Graham, M. (1935) Modern theory of exploiting a fishery, and application to North Sea trawling. Journal du Conseil International pour l’Exploration de la Mer, 10, 264-274.
[106] Foster, J.J., Ferro, R.S.T. and Reid, A.J. (1977) Analytic approaches in fishing technology. In: Steele, J.H., Ed., Fisheries Mathematics, Academic Press, London, 99-116.
[107] Brethes, J.C. and O’Boyle, R.N. (1990) Methodes d’evaluation des stocks halieutiques. Centre International d’Exploitation des Oceans, Halifax, 933.
[108] Gayanilo Jr., F.C. and Pauly, D. (1997) FAO-ICLARM fish stock assessment (FiSAT) reference manual. FAO Computerized Information Series (Fisheries), 8, 2.
[109] Froese, R. and Pauly, D. (1998) FishBase 98: Concepts, design and data sources. International Center for Living Aquatic Resources Management, Manila.
[110] Caddy, J.F. (1983) The cephalopods: Factors relevant to their population dynamics and to the assessment and management of stocks. FAO Fisheries Technical Paper, 231, 416-452.
[111] Alverson, D.L. and Carney, M.J. (1975) A graphic review of the growth and decay of population cohorts. Journal du Conseil International pour l’Exploration de la Mer, 36, 133-143.
[112] Hoenig, J.M. (1983) Empirical use of longevity data to estimate mortality rates. Fishery Bulletin of the United States of America, 82, 898-902.
[113] Beverton, R.J.H. (1992) Patterns of reproductive strategy parameters in some marine teleost fishes. Journal of Fish Biology, 41, 137-160.
[114] Hewitt, D.A. and Hoenig, J.M. (2005) Comparison of two approaches for estimating natural mortality based on longevity. Fishery Bulletin of the United States of America, 103, 433-437.
[115] Rosenberg, A.A. and Beddington, J.R. (1988) Length-based methods of fish stock assessment. In: Gulland, J.A., Ed., Fish Population Dynamics, John Wiley and Sons, Chichester, 83-103.
[116] Froese, R. (2006) Cube law, condition factor and weightlength relationships: History, meta-analysis and recommendations. Journal of Applied Ichthyology, 22, 241-253. doi:10.1111/j.1439-0426.2006.00805.x
[117] Hoggarth, D.D., Abeyasekera, S., Arthur, R.I., Beddington, J.R., et al. (2006) Stock assessment for fishery management—A framework guide to the stock assessment tools of the Fisheries Management Science Programme (FMSP). FAO Fisheries Technical Paper, 487.
[118] Allen, K.R. (1953) A method for computing the optimum size limit for a fishery. Nature London, 172, 210. doi:10.1038/172210a0
[119] Allen, K.R. (1967) Some quick methods for estimating the effect on catch of changes in the size limit. Journal du Conseil International pour l’Exploration de la Mer, 31, 111-126.
[120] Tanaka, S. (1962) The effect of reduction of fishing effort on Yield. Journal of the Fisheries Research Board of Canada, 19, 521-529. doi:10.1139/f62-035
[121] Ebert, T.A. (1982) Longevity, life history and relative body wall size in sea urchins. Ecological Monographs, 52, 353-394. doi:10.2307/2937351
[122] Chapman, D.G. (1961) Statistical problems in dynamics of exploited fisheries populations. In: Neyman, J., Ed., Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 4. University of California Press, Berkeley, 153-168.
[123] Ivlev, V.S. (1961) Mathematical analysis of the population dynamics of fish. Israel Program for scientific translation (form the Russian, original published in 1959).
[124] Caddy, J.F. (1996) Modelling natural mortality with age in short-lived invertebrate populations: Definition of a strategy of gnomonic time division. Aquatic Living Resources, 9, 197-207. doi:10.1051/alr:1996023
[125] Jensen, A.J.C. (1949) The relation between size of mesh and length of fish released. Rapports et Procès-Verbaux des Rèunions Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 125, 65-69.
[126] Pope, J.A., Margetts, A.R., Hamley, J.M. and Akyuz, E.F. (1983) Manual of methods for fish stock assessment; part 3: Selectivity of fishing gear. FAO Fisheries Technical Paper, 41, 1-56.
[127] Bishop, Y.M.M. (1959) Errors in estimates of mortality obtained from virtual populations. Journal of the Fisheries Research Board of Canada, 16, 73-90. doi:10.1139/f59-009
[128] Die, D.J. and Caddy, J.F. (1997) Sustainable yield indicators from biomass: Are there appropriate reference points for use in tropical fisheries? Fisheries Research, 32, 69-79. doi:10.1016/S0165-7836(97)00029-5
[129] Schaefer, M.B. (1957) A study of the dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Ocean. Bulletin of the Inter-American Tropical Tuna Commission, 2, 247-285.
[130] Jones, R. (1956) The analyses of trawl haul statistics with particular reference to the estimation of survival rates. Rapports et Procès-Verbaux des Rèunions Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 140, 30-39.
[131] Cushing, D.H. and Horwood, J.W. (1977) Development of a model of stock and recruitment. In: Steele, J.-H., Ed., Fisheries Mathematics, Academic Press, London, 21-35.
[132] Carrothers, P.J.G. (1980) Estimation of trawl door spread from wing spread. Journal of Northwest Atlantic Fishery Science, 1, 81-90.
[133] Doubleday, W.G. and Rivard, D. (1981) Canadian special publication of fisheries and aquatic sciences. Botton Trawl Surveys, 58.
[134] Campbell, N.A. and Phillips, B.F. (1972) The von Bertalanffy growth curve and its application to capture-recapture data in fisheries biology. Journal du Conseil International pour l’Exploration de la Mer, 34, 295-299.
[135] Katsanevakis, S. (2006) Modelling fish growth: Model selection, multi-model inference and model selection uncertainty. Fisheries Research, 81, 229-235. doi:10.1016/j.fishres.2006.07.002
[136] Nikolsky, G.V. (1963) The ecology of fishes. Academic Press Inc., London.
[137] Ramm, D.C. and Xiao, Y. (1995) Herding in groundfish and effective path width of trawls. Fisheries Research, 24, 243-259. doi:10.1016/0165-7836(95)00373-I
[138] Pauly, D. (1981) The relationships between gill surface area and growth performance in fish; a generalisation of von Bertalanffy’s theory of growth. Meeresforschung, 28, 251-282.
[139] De Lury, D.B. (1961) On the planning of experiments for the estimation of fish populations. Journal of the Fisheries Research Board of Canada, 8, 281-307.
[140] Andersen, K.P. and Ursin, E. (1977) A multispecies extension to the Beverton and Holt theory of fishing, with accounts of phosphorus circulation and primary production. Meddelelser fra Danmarks Fiskeri-Og Havundersogelser, 7, 319-435.
[141] Nicholson, M.D. and Pope, J.A. (1977) The estimation of mortality from capture-recapture experiments. In: Steele, J.H., Ed., Fisheries Mathematics, Academic Press, London, 77-85.
[142] Sissenwine, M.P., Fogarty, M.I. and Overholtz, W.J. (1988) Some fisheries management implications of recruitment variability. In: Gulland, J.A., Ed., Fish Population Dynamics, John Wiley & Sons, New York, 129-152.
[143] Ware, D.M. (1975) Growth, metabolism, and optimal swimming speed of a pelagic fish. Journal of the Fisheries Research Board of Canada, 32, 33-41. doi:10.1139/f75-005
[144] Rothschild, B.J. and Suda, A. (1977) Population dynamics of tuna. In: Gulland, J.A., Ed., Fish Population Dynamics, John Wiley and Sons, New York, 309-334.
[145] Cushing, D.H. (1981) Fisheries biology: A study in population dynamics. University of Wisconsin Press, Madison.
[146] Harden, J.F.R. (1977) Performance and behaviour on migration. In: Steele, J.H., Ed., Fisheries Mathematics, Academic Press, London, 145-170.
[147] Barkley, R.A. (1964) The theoretical effectiveness of towed-net samplers as related to sample size and swimming speed of organisms. Journal du Conseil Permanent International pour l’Exploration de la Mer, 24, 146-157.
[148] Davis, F.M. (1934) Mesh experiments with trawls 1928-1933. Fishery Investigation, 14, 1-56.
[149] Houghton, R.G. (1977) The fishing power of trawlers in the western English Channel between 1965 and 1968. Journal du Conseil International pour l’Exploration de la Mer, 37, 130-136. doi:10.1093/icesjms/37.2.130
[150] Treschev, A.I. (1978) Application of the fished volume method for measuring fishing effort. ICES Cooperative Research Report, 79, 1-55.
[151] Anganuzzi, A., Hilborn, R. and Skalski, J.R. (1994) Estimation of size selectivity and movement rates from mark-recovery data. Canadian Journal of Fisheries and Aquatic Sciences, 51, 734-742. doi:10.1139/f94-073
[152] Stamps, J.A., Mangel, M. and Phillips, J.A. (1998) A new look at relationships between size at maturity and asymptotic size. American Naturalist, 152, 470-479.
[153] Beyer, J.E., Kirchner, C.H. and Holtzhausen, J.A. (1999) A method to determine size-specific natural mortality applied to westcoast steenbras (Lithognathus aureti) in Namibia. Fisheries Research, 41, 133-155. doi:10.1016/S0165-7836(99)00011-9
[154] Southward, G.M. and Chapman, D.G. (1965) Utilization of Pacific halibut stocks: Study of Bertalanffy’s growth equation. International Pacific Halibut Commission Scientific Report, 39, 1-33.
[155] Cortés, E. (2000) Life history patterns and correlations in sharks. Review in Fisheries Science, 8, 299-344.
[156] Rothschild, B.J. (1977) Fishing effort. In: Gulland, J.A., Ed., Fish Population Dynamics, John Wiley and Sons, New York, 96-115.
[157] Cushing, D.H. (1988) The study of stock and recruitment. In: Gulland, J.A., Ed., Fish Population Dynamics, John Wiley and Sons, Chichester, pp. 105-128.
[158] Tomlinson, P.K. and Abramson, N.J. (1961) Fitting a von Bertalanffy growth curve by the least squares. California Fish and Game Fish Bulletin, 116, 1-69.
[159] Holden, M.J. (1977) Elasmobranchs. In: Gulland, J.A., Ed., Fish Population Dynamics, John Wiley & Sons, Chichester, 187-215.
[160] Francis, R.I.C.C. (1995) The analysis of otolith data—A mathematician’s perspective (What precisely is your model?). In: Secor, D.H., Dean, J.M. and Campana, S.E., Eds., Recent Developments in Fish Otolith Research, University of South Carolina Press, Columbia.
[161] Lockwood, S.J. (1974) The use of the von Bertalanffy growth equation to describe the seasonal growth of fish. Journal du Conseil International pour l’Exploration de la Mer, 35, 175-179.
[162] MacDonald, P.D.M. and Pitcher, T.J. (1979) Age-groups from size-frequency data: A versatile and efficient method of analysing distribution mixtures. Journal of the Fisheries Research Board of Canada, 36, 987-1001. doi:10.1139/f79-137
[163] Caddy, J.F. (1991) Death rates and time intervals: Is there an alternative to the constant natural mortality axiom? Reviews in Fish Biology and Fisheries, 11, 109 118. doi:10.1007/BF00157581
[164] Roff, D.A. (1984) The evolution of life history parameters in teleosts. Canadian Journal of Fisheries and Aquatic Sciences, 41, 989-1000. doi:10.1139/f84-114
[165] Beverton, R.J.H. and Iles, T.C. (1992) Mortality rates of 0-group plaice (Pleuronectes platessa L.), dab (Limanda limanda L.) and turbot (Scophthalmus maximus L.) in European waters: II. Comparison of mortality rates and construction of life-table for 0-group plaice. Netherland Journal of Sea Research, 29, 49-59. doi:10.1016/0077-7579(92)90007-2
[166] Gallucci, V.F. and Quinn T.J. II (1979) Reparameterizing, fitting, and testing a simple growth model. Transactions of the American Fisheries Society, 108, 14-25. doi:10.1577/1548-8659(1979)108<14:RFATAS>2.0.CO;2
[167] Allen, K.R. (1971) Relation between production and biomass. Journal of the Fisheries Research Board of Canada, 28, 1573-1581.
[168] Robson, D.S. (1966) Estimation of the relative fishing power of individual ships. ICNAF Research Bulletin, 3, 5-14.
[169] Arreguín-Sánchez, F. (1996) Catchability: A key parameter for fish stock assessment. Reviews in Fish Biology and Fisheries, 6, 221-242. doi:10.1007/BF00182344
[170] Myers, R.A. and Doyle, R.W. (1983) Predicting natural mortality rates and reproduction—Mortality trade-offs from fish life history data. Canadian Journal of Fisheries and Aquatic Sciences, 40, 612-620. doi:10.1139/f83-080
[171] McGurk, M.D. (1986) Natural mortality of marine pelagic fish eggs and larvae: The role of spatial patchiness. Marine Ecology Progress Series, 34, 227-242.
[172] Alverson, D.L. (1971) Manual of methods for fisheries resource survey and appraisal. Part 1. Survey and charting of fisheries resources. Food and Agriculture Organization of the United Nations, 1-102.
[173] Garcia, S.M., Sparre, P. and Csirke, J. (1989) Estimating surplus production and maximum sustainable yield from biomass data when catch and effort time series are not available. Fisheries Research, 8, 13-23. doi:10.1016/0165-7836(89)90037-4
[174] Anon. (1948) A symposium on fish populations. Bulletin of the Bingham Oceanographic Collection, New Haven.
[175] Wetherall, J.A., Polovina, J.J. and Ralston, S. (1987) Estimating growth and mortality in steady-state fish stocks from length-frequency data. In: Pauly, D. and Morgan, G.R., Eds., Length Based Methods in Fisheries Research, ICLARM, Conference Proceeding, Manila, 53-74.
[176] Welch, D.W. and McFarlane, G.A. (1990) Quantifying the growth of female Pacific Hake (Merluccius productus): An example of measuring uncertainty and bias in nonlinear parameter estimation. Canadian Journal of Fisheries and Aquatic Sciences, 47, 672-681. doi:10.1139/f90-074
[177] Froese, R. and Binohlan, C. (2000) Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. Journal of Fish Biology, 56, 758-773. doi:10.1111/j.1095-8649.2000.tb00870.x
[178] Binohlan, C. and Froese, R. (2009) Empirical equations for estimating maximum length from length at first maturity. Journal of Applied Ichthyology, 25, 611-613. doi:10.1111/j.1439-0426.2009.01317.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.