Fractal Cracks Propagation in Aluminum

Abstract

The theory of the fractal structure characterizing propagation of a crack through identification of its generator is presented. It’s generating fractal, the peculiarities of its construction and the way to measure its segments are defined, and a theorem on the inverse scale property of such and other of the axial symmetry property of the fractal generator are presented and demonstrated. The theory is applied on 6061-T6 aluminum samples, using SENB probes. Direction of crack propagation and its fractal dimension are calculated numerically. Results obtained from modeling the direction of crack propagation through mechanics of elastic linear fracture and the one proposed here, called geometrical fractal fracture, are compared, thus developing the mirror case.

Share and Cite:

F. Casanova del Angel and J. Retama Velasco, "Fractal Cracks Propagation in Aluminum," Modeling and Numerical Simulation of Material Science, Vol. 3 No. 3A, 2013, pp. 23-32. doi: 10.4236/mnsms.2013.33A004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Guerrero and V. González, “Fractales: Fundamentos y Aplicaciones, Parte I: Concepción Geométrica en la Ciencia e Ingeniería,” Ingenierías,Vol. 4, No. 10, 2001, pp. 53-59.
[2] C. Guerrero and V. González, “Fractales: Fundamentos y Aplicaciones, Parte II: Aplicaciones en Ingeniería de Materiales,” Ingenierías, Vol. 4, No. 12, 2001, pp. 15-20. www.uanl.mx/publicaciones/ ingenierias/12/
[3] Y. Termonia and P. Meakin, “Formation of Fractal Cracks in a Kinetic Fracture Model,” Nature, Vol. 320, No. 6061, 1986, pp. 429-431. doi:10.1038/320429a0
[4] G. Peng and D. Tian, “Fracton Dimensionalities for Field-Biased Diffusion-Limited Aggregation Clusters,” Physics Review B, Vol. 43, No. 10, 1991, pp. 8572-8575. doi:10.1103/PhysRevB.43.8572
[5] B. B. Mandelbrot, “Fractales, Hasard et Finance,” Flammarion, Paris, 1997. doi:10.1007/978-1-4757-2763-0
[6] J. Oliver, “Modeling Strong Discontinuities in Solid Mechanics via Strain Softening Constitutive Equations. Part 1: Fundamentals,” International Journal for Numerical Method in Engineering, Vol. 39, No. 21, 1996, pp. 3575- 3600. doi:10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
[7] J. Oliver, “Modeling Strong Discontinuities in Solid Mechanics via Strain Softening Constitutive Equations. Part 2: Numerical Simulation,” International Journal for Numerical Method in Engineering, Vol. 39, No. 21, 1996, pp. 3601-3623. doi:10.1002/(SICI)1097-0207(19961115)39:21<3601::AID-NME64>3.0.CO;2-4
[8] J. Retama Velasco, “Mecánica de Fractura Fractal en Aluminio Structural,” Master Thesis, Instituto Politécnico Nacional, México, 2006.
[9] H. Vaughan, “Crack Propagation and the Principal Tensile-Stress Criterion for Mixed-Mode Loading,” Engineering Fracture Mechanic, Vol. 59, No. 3, 1998. pp. 393-397. doi:10.1016/S0013-7944(97)00138-0
[10] G. Juárez Luna, “Aplicación de la mecánica de Fractura a Problemas de la Geotecnia,” Master Thesis, Instituto Politécnico Nacional, México, 2002.
[11] V. Talanquer, “Fractus, Fracta, Fractal: Fractales, de Laberintos y Espejos,” No. 47, Fondo de Cultura Económica, México, 2002.
[12] H. O. Peitgen, H. Jürgen and D. Saupe, “Fractals for the Classroom, Introduction to Fractals and Chaos, Part two,” 2nd edition, Springer-Verlag, Berlin, 1993.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.