High Contribution of Sea Salt Aerosols on Atmospheric Particles Measured at an Urban Tropical Location in Reunion Island

Abstract

PM10 was monitored during 2008-2011 period at LUT and BON, two urban tropical stations close to each other at Saint-Pierre city, in Reunion Island (south-western Indian Ocean). During the study period, notable PM10 concentrations are observed at BON close to the coasts. At LUT, a more inland site, the daily PM10 concentration range between 13 and 70 μg/m3. Importantly, the limit value for the protection of the human health is systematically exceeded at BON while it is never exceeded at LUT. Also, the quality objective (QO: 30 μg/m3, on annual average) and the limit value for the human health protection (LV: 40 μg/m3, on annual average) are exceeded at BON each year during 2008-2011, while at LUT no regulatory values are exceeded. Nitrogen dioxide, an atmospheric tracer of anthropogenic activities was also monitored at LUT and BON. The mean diurnal NO2 variation is of the same level and order of magnitude and exhibits a similar pattern at both stations suggesting that distinct sources influence the PM10 at LUT and at BON. Chemical analysis was performed on daily filters sampled in September-November 2011 at the two stations to determine the sea salt contribution on PM10 across Saint-Pierre city. It showed that the sea salt contribution to the PM10 is 55% at BON in September 2011. The sea salt particles are therefore the main cause for the exceedances of the regulatory values of PM10 recorded at BON. The results importantly suggest that the notable PM10 concentrations measured at this urban marine site might have some but minor impact on human health.

Share and Cite:

C. Bhugwant, M. Bessafi, O. Favez, L. Chiappini, B. Sieja and E. Leoz-Garziandia, "High Contribution of Sea Salt Aerosols on Atmospheric Particles Measured at an Urban Tropical Location in Reunion Island," Journal of Environmental Protection, Vol. 4 No. 8, 2013, pp. 828-842. doi: 10.4236/jep.2013.48097.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. S. O’Neill, D. Loomis, V. M. Torres-Meza, A. Retama and D. Gold, “Estimating Particle Exposure in the Mexico City Metropolitan Area,” Journal of Exposure Analysis and Environmental Epidemiology, Vol. 12, No. 2, 2002, pp. 145-156.
[2] M. D. Attfield, P. L. Schleiff, J. H. Lubin, A. Blair, P. A. Stewart, R. Vermeulen, J. B. Coble and D. T. Silverman, “The Diesel Exhaust in Miners Study: A Cohort Mortality Study with Emphasis on Lung Cancer,” Journal of the National Cancer Institute, Vol. 104, No. 11, 2011, pp. 869-883. doi:10.1093/jnci/djs035
[3] IARC (International Agency for Research on Cancer), “Diesel Engine Exhaust Carcinogenic,” Press Release No 213, 2012.
[4] C. Dir, “Council Directive 1999/30/EC of 22nd April 1999 Relating to Limit Values for Sulphur Dioxide, Nitrogen Dioxide and Oxides of Nitrogen, Particulate Matter and Lead in Ambient Air,” Official Journal of the European Union, L163/41, 1999.
[5] WHO, “Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide,” Report on a WHO Working Group, 2003.
[6] WHO, “Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulphur Dioxide, Global Update 2005,” Summary of risk Assessment, Geneva, 2006.
[7] E. Dir, “European Directive 2008/50/EC of the European Parliament and the Council of 21st May 2008 on Ambient Air Quality and Cleaner Air for Europe,” Official Journal of the European Union, L152/1, 2008.
[8] IPCC (Intergovernmental Panel on Climate Change), S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, “Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press, Cambridge, 2007.
[9] R. Bhatia, P. Lopipero and A. H. Smith, “Diesel Exhaust Exposure and Lung Cancer,” Epidemiology, Vol. 9, No. 1, 1998, pp. 84-91. doi:10.1097/00001648-199801000-00017
[10] EPA, “Fourth External Review Draft of Air Quality Criteria for Particulate Matter,” 2003.
[11] U. Gehring, J. Heinrich, U. Kramer, V. Grote, M. Hochadel, D. Sugiri, M. Kraft, K. Rauchfuss, H. G. Eberwein and H.-E. Wichmann, “Long-Term Exposure to Ambient Air Pollution and Cardiopulmonary Mortality in Women,” Epidemiology, Vol. 17, No. 5, 2006, pp. 545-551. doi:10.1097/01.ede.0000224541.38258.87
[12] L. Carbajal-Arroyo, A. Barraza-Villarreal, R. Durand-Pardo, H. Moreno-Macias, R. Espinoza-Lain, P. Chiarella-Ortigosa and I. Romieu, “Impact of Traffic Flow on the Asthma Prevalence among School Children in Lima, Peru,” Journal of Asthma, Vol. 44, No. 3, 2007, pp. 197-202. doi:10.1080/02770900701209756
[13] C. A. Pope, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito and G. D. Thurston, “Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution,” Journal of the American Medical Association, Vol. 288, No. 9, 2002, pp. 1132-1141.
[14] C. A. Pope, M. Ezzoti and D. W. Dockery, “Fine Particulate Air Pollution and Life Expectancy in the United States,” The New England Journal of Medicine, Vol. 360, 2009, pp. 376-386. doi:10.1056/NEJMsa0805646
[15] M. O. Andreae and P. J. Crutzen, “Atmospheric Aerosols: Biogeochemical Sources and Role in Atmospheric Chemistry,” Science, Vol. 276, No. 5315, 1997, pp. 1052-1058. doi:10.1126/science.276.5315.1052
[16] C. D. O'Dowd, M. H. Smith, I. E. Consterdine and J. A. Lowe, “Marine aerosol, Sea-Salt, and the Marine Sulphur Cycle: A Short Review,” Atmospheric Environment, Vol. 31, No. 1, 1997, pp. 73-80. doi:10.1016/S1352-2310(96)00106-9
[17] B. J. Finlayson-Pitts, “The Tropospheric Chemistry of Sea-Salt: A Molecular-Level View of the Chemistry of NaCl and NaBr,” Chemical Reviews, Vol. 103, No. 12, 2003, pp. 4801-4822. doi:10.1021/cr020653t
[18] E. R. Lewis and S. E. Schwartz, “Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review,” Geophysical Monograph Series, Vol. 152, American Geophysical Union, Washington DC, 2004. doi:10.1029/GM152
[19] C. D. O’Dowd and G. De Leeuw, “Marine Aerosol Production: A Review of the Current Knowledge,” Philosophical Transactions of the Royal Society A, Vol. 365, No. 1856, 2007, pp. 1753-1774. doi:10.1098/rsta.2007.2043
[20] N. W. Tindale and P. P. Pease, “Aerosols over the Arabian Sea: Atmospheric Transport Pathways and Concentrations of Dust and Sea Salt,” Deep-Sea Research Part II, Vol. 46, No. 8-9, 1999, pp. 1577-1595. doi:10.1016/S0967-0645(99)00036-3
[21] J. Putaud, F. Raes, R. VanDingenen, E. Bruggemann, M. Facchini, S. Decesari, S. Fuzzi, R. Gehrig, C. Hueglin, P. Laj, G. Lorbeer, W. Maenhaut, N. Mihalopoulos, K. Mueller, X. Querol, S. Rodriguez, J. Schneider, G. Spindler, H. Ten Brink, K. Torseth and A. Wiedensohler, “European Aerosol Phenomenology-2: Chemical Characteristics of Particulate Matter at Kerbside, Urban, Rural and Background Sites in Europe,” Atmospheric Environment, Vol. 38, No. 16, 2004, pp. 2579-2595. doi:10.1016/j.atmosenv.2004.01.041
[22] A. M. M. Manders, M. Schaap, X. Querol, M. F. M. A. Albert, J. Vercauteren, T. A. J. Kuhlbusch and R. Hoogerbrugge, “Sea Salt Concentrations across the European Continent,” Atmospheric Environment, Vol. 44, No. 20, 2010, pp. 2434-2442. doi:10.1016/j.atmosenv.2010.03.028
[23] M. Hess, U. K. Krieger, C. Marcolli, T. Huthwelker, M. Ammann, W. A. Lanford and Th. Peter, “Bromine Enrichment in the Near-Surface Region of Br-Doped NaCl Single Crystals Diagnosed by Rutherford Backscattering Spectrometry,” The Journal of Physical Chemistry A, Vol. 111, No. 20, 2007, pp. 4312-4321. doi:10.1021/jp0674120
[24] R. C. Easter, S. J. Ghan, Y. Zhang, R. D. Saylor, E. G. Chapman, N. S. Laulainen, H. Abdul-Razzak, H. R. Leung, X. D. Bian and R. A. Zaveri, “MIRAGE: Model Description and Evaluation of Aerosols and Trace Gases,” Journal of Geophysical Research, Vol. 109, No. D20, 2004, Article ID: D20210. doi:10.1029/2004JD004571
[25] N. Mahowald, J.-F. Lamarque, X. X. Tie and E. Wolff, “Sea Salt Aerosol Response to Climate Change: Last Glacial Maximum, Preindustrial, and Doubled Carbon Dioxide Climates,” Journal of Geophysical Research, Vol. 111, No. D5, 2006, Article ID: D05303. doi:10.1029/2005JD006459
[26] S. Tamm and M. Schulz, “Open-Ocean Aerosol Composition Obtained during 15 Months on a North Sea Ferry,” Atmospheric Environment, Vol. 37, Suppl. 1, 2003, pp. 133-143. doi:10.1016/S1352-2310(03)00241-3
[27] E. M. Knipping and D. Dabdub, “Impact of Chlorine Emissions from Sea-Salt Aerosol on Coastal Urban Ozone,” Environmental Science & Technology, Vol. 37, No. 2, 2003, pp. 275-284. doi:10.1021/es025793z
[28] A. Cohan, W. Chang, M. Carreras-Sospedra and D. Dabdub, “Influence of Sea-Salt Activated Chlorine and Surface-Mediated Renoxification on the Weekend Effect in the South Coast Air Basin of California,” Atmospheric Environment, Vol. 42, No. 13, 2008, pp. 3115-3129. doi:10.1016/j.atmosenv.2007.11.046
[29] S. C. Pryor and R. J. Barthelmie, “Particle Dry Deposition to Water Surfaces: Processes and Consequences,” Marine Pollution Bulletin, Vol. 41, No. 1-6, 2000, pp. 220-231.
[30] M. Van Loon, R. Vautard, M. Schaap, R. Bergstrom, B. Bessagnet, J. Brandt, P. Builtjes, J. H. Christensen, J. H. Cuvelier, A. Graf, J. E. Jonson, M. Krol, J. Langner, P. Roberts, L. Rouil, R. Stern, L. Tarrasón, P. Thunis, E. Vignati, L. White and P. Wind, “Evaluation of Long-Term Ozone Simulations from Seven Regional Air Quality Models and Their Ensemble Average,” Atmospheric Environment, Vol. 41, No. 10, 2007, pp. 2083-2097. doi:10.1016/j.atmosenv.2006.10.073
[31] T. H. Muster and I. S. Cole, “Attachment Efficiencies of Salt Aerosols onto Infrastructure and Implications for Atmospheric Corrosion,” Journal of the Electrochemical Society, Vol. 152, No. 3, 2005, pp. B125-B131. doi:10.1149/1.1859813
[32] Y. J. Yoon and P. Brimblecombe, “Modelling the Contribution of Sea Salt and Dimethyl Sulfide Derived Aerosol to Marine CCN,” Atmospheric Chemistry and Physics, Vol. 2, No. 1, 2002, pp. 17-30. doi:10.5194/acp-2-17-2002
[33] V. Vinoj and S. K. Satheesh, “Direct and Indirect Radiative Effects of Sea-Salt Aerosols over Arabian Sea,” Current Science (India), Vol. 86, No. 10, 2004, pp. 1381-1390.
[34] S. L. Gong, L. A. Bartie, J.-P. Blanchet, “Modeling Sea-Salt Aerosols in the Atmosphere—1. Model Development,” Journal of Geophysical Research, Vol. 102, No. D3, 1997, pp. 3805-3818.
[35] E. Athanasopoulou, M. Tombrou, S. N. Pandis and A. G. Russell, “The Role of Sea-Salt Emissions and Heterogeneous Chemistry in the Air Quality of Polluted Coastal Areas,” Atmospheric Chemistry and Physics, Vol. 8, No. 19, 2008, pp. 5755-5769. doi:10.5194/acp-8-5755-2008
[36] B. Finlayson-Pitts and J. N. Pitts Jr., “Chemistry of the Upper and Lower Atmosphere, Theory, Experiments and Applications,” Academic Press, Waltham, 1999.
[37] H. Hass, M. van Loon, C. Kessler, R. Stern, J. Matthijsen, F. Sauter, Z. Zlatev, J. Langner, V. Foltescu and M. Schaap, “Aerosol Modelling: Results and Intercomparison from European Regional-Scale Modelling Systems,” Special Rep. EUROTRAC-2 ISS, Munchen, 2003.
[38] B. Bessagnet, A. Hodzic, H. Vautard, M. Beekmann, S. Cheinet, C. Honoré, C. Liousse and L. Rouil, “Aerosol Modeling with CHIMERE: Preliminary Evaluation at the Continental Scale,” Atmospheric Environment, Vol. 38, No. 18, 2004, pp. 2803-2817. doi:10.1016/j.atmosenv.2004.02.034
[39] S. L. Gong, L. A. Barrie, J.-P. Blanchet, K. von Salzen, U. Lohmann, G. Lesins, L. Spacek, L. M. Zhang, E. Girard, H. Lin, R. Leaitch, H. Leighton, P. Chylek and P. Huang, “Canadian Aerosol Module: A Size-Segregated Simulation of Atmospheric Aerosol Processes for Climate and Air Quality Models 1. Module Development,” Journal of Geophysical Research, Vol. 108, No. D1, 2003, pp. AAC 3-1-AAC 3-16. doi:10.1029/2001JD002002
[40] W. Guelle, M. Schulz, Y. Balkanski and F. Dentener, “Influence of the Source Formulation on Modeling the Atmospheric Global Distribution of Sea Salt Aerosol,” Journal of Geophysical Research, Vol. 106, No. D21, 2001, pp. 27509-27524. doi:10.1029/2001JD900249
[41] P. Stier, J. Feichter, S. Kinne, S. Kloster, E. Vignati, J. Wilson, L. Ganzeveld, I. Tegen, M. Werner, Y. Balkanski, M. Schulz, O. Boucher, A. Minikin and A. Petzold, “The Aerosol-Climate Model ECHAM5-HAM,” Atmospheric Chemistry and Physics, Vol. 5, No. 4, 2005, pp. 1125-1156.
[42] P. Jiménez-Guerrero, O. Jorba, M. T. Pay, J. P. Montávez, S. Jerez, J. J. Gómez-Navarro and J. M. Baldasano, “Comparison of Two Different Sea-Salt Aerosol Schemes as Implemented in Air Quality Models Applied to the Mediterranean Basin,” Atmospheric Chemistry and Physics, Vol. 11, No. 10, 2011, pp. 4833-4850. doi:10.5194/acp-11-4833-2011
[43] V. L. Foltescu, S. C. Pryor and C. Bennet, “Sea Salt Generation, Dispersion and Removal on the Regional Scale,” Atmospheric Environment, Vol. 39, No. 11, 2005, pp. 2123-2133. doi:10.1016/j.atmosenv.2004.12.030
[44] B. Langmann, S. Varghese, E. Marmer, E. Vignati, J. Wilson, P. Stier and C. O’Dowd, “Aerosol Distribution over Europe: A Model Evaluation Study with Detailed Aerosol Microphysics,” Atmospheric Chemistry and Physics, Vol. 8, No. 6, 2008, pp. 1591-1607. doi:10.5194/acp-8-1591-2008
[45] M. Schaap, R. M. A. Timmermans, F. J. Sauter, M. Roemer, G. J. M. Velders, G. A. C. Boersen, J. P. Beck and P. J. H. Builtjes, “The LOTOS-EUROS Model: Description, Validation and Latest Developments,” International Journal of Environment and Pollution, Vol. 32, No. 2, 2008, pp. 270-290. doi:10.1504/IJEP.2008.017106
[46] A. S. Zakey, F. Giorgi and X. Bi, “Modeling of Sea Salt in a Regional Climate Model: Fluxes and Radiative Forcing,” Journal of Geophysical Research, Vol. 113, No. D14, 2008. doi:10.1029/2007JD009209
[47] C. Bhugwant, H. Cachier, M. Bessafi and J. Leveau, “Impact of Traffic on Black Carbon Aerosol Concentration at La Reunion Island (Southern Indian Ocean),” Atmospheric Environment, Vol. 34, No. 20, 2000, pp. 3464-3473. doi:10.1016/S1352-2310(99)00405-7
[48] C. Bhugwant and P. Brémaud, “Simultaneous Measurements of Black Carbon, PM10, Ozone and NOx Variability at a Locally Polluted Island in the Southern Tropics,” Journal of Atmospheric Chemistry, Vol. 39, No. 3, 2001, pp. 261-280. doi:10.1023/A:1010692201459
[49] C. Bhugwant, M. Bessafi and B. Siéja, “The Potential Impact of Marine Aerosols via the Swell and the Oceanic Waves on the PM10 Concentration Measurements at Urban Marine Locations, Air Pollution Emissions,” Nova Publishers, New York, 2012.
[50] INSEE, “TER (Tableau Economique de La Réunion),” 2010, p. 3014. in French.
[51] W. E. Wilson, B. D. Grover, R. W. Long, N. L. Eatough and D. J. Eatough, “The Measurement of Fine-Particulate Semivolatile Material in Urban Aerosols,” Journal of the Air & Waste Management Association, Vol. 56, No. 4, 2006, pp. 384-397. doi:10.1080/10473289.2006.10464527
[52] B. D. Grover, N. L. Eatough, D. J. Eatough, J. C. Chow, J. G. Watson, J. L. Ambs, M. B. Meyer, P. K. Hopke, R. Al-Horr, D. W. Later and W. E. Wilson, “Measurement of Both Nonvolatile and Semi-Volatile Fractions of Fine Particulate Matter in Fresno, CA,” Aerosol Science and Technology, Vol. 40, No. 10, 2006, pp. 811-826. doi:10.1080/02786820600615071
[53] J. Wanjura, B. Shaw, C. Parnell, R. Lacey and S. Capareda, “Comparisons of Continuous Monitor (TEOM) and Gravimetric Sampler Particulate Matter Concentrations,” American Society of Agricultural and Biological Engineers, Vol. 51, No. 1, 2008, pp. 251-257.
[54] C. Bhugwant and J.-L. Hoareau, “Variability of NO2 in Different Environments at a Moderately Polluted Island over the Southwestern Indian Ocean,” Atmospheric Research, Vol. 66, No. 4, 2003, pp. 241-259. doi:10.1016/S0169-8095(03)00038-3
[55] F. Cavalli, M. Viana, K. E. Yttri, J. Genberg and J.-P. Putaud, “Toward a Standardised Thermal-Optical Protocol for Measuring Atmospheric Organic and Elemental Carbon: The EUSAAR Protocol,” Atmospheric Measurement Techniques, Vol. 3, No. 1, 2010, pp. 79-89. doi:10.5194/amt-3-79-2010
[56] M. E. Birch and R. A. Cary, “Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust,” Aerosol Science and Technology, Vol. 25, No. 3, 1996, pp. 221-241. doi:10.1080/02786829608965393
[57] O. S. Météo-France, “Atlas Climatique de La Réunion,” Bureau d’étude Climatologique, Direction Interrégionale de La Réunion, Annual Report No. 1657, 2000.
[58] N. Pérez, J. Pey, M. Cusack, C. Reche, X. Querol, A. Alastuey and M. Viana, “Variability of Particle Number, Black Carbon, and PM10, PM2.5, and PM1 Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality,” Aerosol Science and Technology, Vol. 44, No. 7, 2010, pp. 487-499. doi:10.1080/02786821003758286
[59] M. T. Limon-Sanchez, P. Carbajal-Romero, L. Hernandez-Mena, H. Saldarriaga-Norena, A. Lopez-Lopez, R. Cosio-Ramirez, J. L. Arriaga-Colina and W. Smith, “Black Carbon in PM2.5, Data from Two Urban Sites in Guadalajara, Mexico during 2008,” Atmospheric Pollution Research, Vol. 2, No. 3, 2011, pp. 358-365. doi:10.5094/APR.2011.040
[60] V. Grondin and C. Bhugwant, “Internship Report, ORA, Etude de l’Impact des Embruns Marins Sur la Qualité de l’Air en Milieu Urbain à la Réunion,” 2008, in French.
[61] B. J. Turpin, P. Saxena and E. Andrews, “Measuring and Simulating Particle Organics in the Atmosphere: Problems and Prospects,” Atmospheric Environment, Vol. 34, No. 18, 2000, pp. 2983-3013. doi:10.1016/S1352-2310(99)00501-4
[62] J. C. Cabada, S. N. Pandis, R. Subramanian, A. L. Robinson, A. Polidori and B. Turpin, “Estimating the Secondary Organic Aerosol Contribution to PM2.5 Using the EC Tracer Method Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Super Sites Program,” Aerosol Science and Technology, Vol. 38, Suppl. 1, 2004, pp. 140-155. doi:10.1080/02786820390229084
[63] E. Friese and A. Ebel, “Temperature Dependent Thermodynamic Model of the System H+-NH4+-Na+-SO42--NO3--Cl--H2O,” Journal of Physical Chemistry A, Vol. 114, No. 43, 2010, pp. 11595-11631. doi:10.1021/jp101041j

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.