Oxidative Polymerization of N-Phenylanthranilic Acid in the Heterophase System


Polymers of N-phenylanthranilic acid were obtained by oxidative polymerization in the heterophase system in the presence of chloroform. Effect of synthesis conditions on the chemical structure of the polymers was studied. It was found that the growth of polymeric chain occurs via C-C joining into 2- and 4-positions of phenyl rings with respect to nitrogen. Thermal stability of poly-N-phenylanthranilic acid was studied.

Share and Cite:

S. Ozkan, I. Eremeev, G. Karpacheva and G. Bondarenko, "Oxidative Polymerization of N-Phenylanthranilic Acid in the Heterophase System," Open Journal of Polymer Chemistry, Vol. 3 No. 3, 2013, pp. 63-69. doi: 10.4236/ojpchem.2013.33012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Malinauskas, “Chemical Deposition of Conducting Polymers,” Polymer, Vol. 42, No. 9, 2001, pp. 3957-3972. doi:10.1016/S0032-3861(00)00800-4
[2] A. G. MacDiarmid, “Synthetic Metals: A Novel Role for Organic Polymers,” Synthetic Metals, Vol. 125, No. 1, 2002, pp. 11-22. doi:10.1016/S0379-6779(01)00508-2
[3] Zh. Ozkan, G. P. Karpacheva, A. V. Orlov and M. A. Dzyubina, “Thermal Stability of Diphenylamine Synthesized through Oxidative Polymerization of Diphenylamine,” Journal of Polymer Science B, Vol. 49, No. 1-2, 2007, pp. 36-41.
[4] S. Zh. Ozkan, G. P. Karpacheva and G. N. Bondarenko, “Polymers of Phenoxazine: Synthesis, Structure,” Russian Chemical Bulletin, Vol. 60, No. 8, 2011, pp. 1651-1656. doi:10.1007/s11172-011-0247-z
[5] S. Zh. Ozkan, G. N. Bondarenko and G. P. Karpacheva, “Oxidative Polymerization of Diphenylamine-2-carboxylic Acid: Synthesis, Structure, and Properties of Polymers,” Journal of Polymer Science B, Vol. 52, No. 5, 2010, pp. 263-269.
[6] P. N. Adams and A. P. Monkman, “Characterization of High Molecular Weight Polyaniline Synthesized at -40°C Using a 0.25:1 Mole Ratio of Persulfate Oxidant to Aniline,” Synthetic Metals, Vol. 87, No. 2, 1997, pp. 165-169. doi:10.1016/S0379-6779(97)03818-6
[7] J. Stejskal, A. Riede, D. Hlavata, J. Prokees, M. Helms tedt and P. Holler, “The Effect of Polymerization Temperature on Molecular Weight, Crystallinity, and Electrical Conductivity of Polyaniline,” Synthetic Metals, Vol. 96, No. 1, 1998, pp. 55-61. doi:10.1016/S0379-6779(98)00064-2
[8] A. V. Orlov, S. Zh. Ozkan, G. N. Bondarenko and G. P. Karpacheva, “Oxidative Polymerization of Diphenylamine: Synthesis and Structure of Polymers,” Journal of Polymer Science B, Vol. 48, No. 1-2, 2006, pp. 5-10.
[9] A. V. Orlov, S. Zh. Ozkan and G. P. Karpacheva, “Oxidative Polymerization of Diphenylamine: A Mechanistic Study,” Journal of Polymer Science B, Vol. 48, No. 1-2, 2006, pp. 11-17.
[10] S. Zh. Ozkan, G. N. Bondarenko, A. V. Orlov and G. P. Karpacheva, “Interfacial Oxidative Polymerization of Phenothiazin,” Journal of Polymer Science B, Vol. 51, No. 5-6, 2009, pp. 149-156.
[11] Y. M. Korolev and S. Zh. Ozkan, “Synthesis and X-Ray Diffraction Study of Polyphenothiazine,” Doklady Physi cal Chemistry, Vol. 429, No. 1, 2009, pp. 223-226. doi:10.1134/S0012501609110025
[12] H. S. O. Chan, S. C. Ng, W. S. Sim, K. L. Tan and B. T. G. Tan, “Preparation and Characterization of Electrically Conducting Copolymers of Aniline and Anthranilic Acid: Evidence for Self-Doping by X-ray Photoelectron spectroscopy,” Macromolecules, Vol. 25, No. 22, 1992, pp. 6029-6034. doi:10.1021/ma00048a026
[13] M. T. Nguen and A. F. Diaz, “Water-Soluble Poly(Ani line-co-o-Anthranilic Acid) Copolymers,” Macromole cules, Vol. 28, No. 9, 1995, pp. 3411-3415. doi:10.1021/ma00113a047
[14] K. Ogura, H. Shiigi, M. Nakayama and A. Ogawa, “Thermal Properties of Poly(Anthranilic Acid) (PANA) and Humidity-Sensitive Composites Derived from Heat Treated PANA and Poly(Vinyl Alcohol),” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 37, No. 23, 1999, pp. 4458-4465. doi:10.1002/(SICI)1099-0518(19991201)37:23<4458::AID-POLA23>3.0.CO;2-R
[15] M. S. Wu, T. C. Wen and A. Gopalan, “In Situ UV-Vi sisible Spectroelectrochemical Studies on the Copoly merization of Diphenylamine with Anthranilic Acid,” Ma terials Chemistry and Physics, Vol. 74, No. 1, 2002, pp. 58-65. doi:10.1016/S0254-0584(01)00406-0
[16] M. S. Wu, T. C. Wen and A. Gopalan, “Electrochemical Copolymerization of Diphenylamine and Anthranilic Acid with Various Feed Ratios,” Journal of The Electro chemical Society, Vol. 148, No. 5, 2001, pp. D65-D73. doi:10.1149/1.1366625
[17] S. Zh. Ozkan, I. S. Eremeev, G. P. Karpacheva, T. N. Prudskova, E. V. Veselova, G. N. Bondarenko and G. A. Shandryuk, “Polymers of Dipheylamine-2-carboxylic Acid: Synthesis, Structure and Properties,” Journal of Polymer Science B, Vol. 55, No. 3-4, 2013, pp. 107-115.
[18] S. Zh. Ozkan, “Candidates Dissertation in Chemistry,” 2006.
[19] A. P. Dementjev, A. de Graaf, M. C. M. van de Sanden, K. I. Maslakov, A. V. Naumkin and A. A. Serov, “X-Ray Photoelectron Spectroscopy Reference Data for Identifi cation of the C3N4 Phase in Carbon-Nitrogen Films,” Diamond and Related Materials, Vol. 9, No. 11, 2000, pp. 1904-1907. doi:10.1016/S0925-9635(00)00345-9
[20] K. L. Tan, B. T. G. Tan, E. T. Kang and K. G. Neoh, “X Ray Photoelectron Spectroscopy Studies of the Chemical Structure of Polyaniline,” Physical Review B, Vol. 39, No. 11, 1989, pp. 8070-8073. doi:10.1103/PhysRevB.39.8070
[21] S. W. Huang, K. G. Neoh, E. T. Kang, H. S. Han and K. L. Tan, “Palladium-Containing Polyaniline and Polypyr role Microparticles,” Journal of Materials Chemistry, Vol. 8, No. 8, 1998, pp. 1743-1748. doi:10.1039/a802245c
[22] J. Yue, A. J. Epstein, Z. Zhong, P. K. Gallagher and A. G. MacDiarmid, “Thermal Stabilites of Polyanilines,” Syn thetic Metals, Vol. 41, No. 1-2, 1991, pp. 765-768. doi:10.1016/0379-6779(91)91180-I
[23] V. G. Kulkarni, L. D. Campbell and W. R. Mathew, “Thermal Stability of Polyaniline,” Synthetic Metals, Vol. 30, No. 3, 1989, pp. 321-325. doi:10.1016/0379-6779(89)90654-1
[24] A. Boyle, J. F. Penneau, E. Genies and C. Riekel, “The Effect of Heating on Polyaniline Powders Studied by Rreal-Time Synchrotron Radiation Diffraction, Mass Spe ctrometry and Thermal Analysis,” Journal of Polymer Science Part B: Polymer Physics, Vol. 30, No. 1, 1992, pp. 265-274. doi:10.1002/polb.1992.090300306
[25] K. Amano, H. Ishikawa, A. Kobayashi, M. Satoh and E. Hasegawa, “Thermal Stability of Chemically Synthesized Polyaniline,” Synthetic Metals, Vol. 62, No. 3, 1994, pp. 229-232. doi:10.1016/0379-6779(94)90210-0
[26] L. Ding, X. Wang and R. V. Gregory, “Thermal Proper ties of Chemically Synthesized Polyaniline (EB) Pow der,” Synthetic Metals, Vol. 104, No. 2, 1999, pp. 73-78. doi:10.1016/S0379-6779(99)00035-1
[27] X.-H. Wang, Y.-H. Geng, L.-X. Wang, X.-B. Jing and F.-S. Wang, “Thermal Behaviors of Doped Polyaniline,” Synthetic Metals, Vol. 69, No. 1-3, 1995, pp. 265-266. doi:10.1016/0379-6779(94)02443-3
[28] T.-Ch. Wen, J.-B. Chen and A. Gopalan, “Soluble and Methane Sulfonic Acid Doped Poly(Diphenylamine)-Syn thesis and Characterization,” Materials Letters, Vol. 57, No. 2, 2002, pp. 280-290.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.