Isolated Cobalt Nanoparticles Prepared on HOPG in Ultrahigh Vacuum Using Thermal Annealing

Abstract

Cobalt nanoparticles on the surface of highly oriented pyrolytic graphite have been studied by atomic force microscopy. Thermal annealing in ultrahigh vacuum was used to change the size of cobalt nanoparticles and their surface distribution. The effect of two key parameters, annealing time and temperature, on the size and the surface distribution of nanoparticles has been studied. The dependence of the particle size on these parameters has been obtained. It has been shown that the main mechanism of the nanoparticle growth is Ostwald ripening.

 

Share and Cite:

Lebedev, D. , Nurgazizov, N. , Chuklanov, A. and Bukharaev, A. (2013) Isolated Cobalt Nanoparticles Prepared on HOPG in Ultrahigh Vacuum Using Thermal Annealing. Advances in Nanoparticles, 2, 236-240. doi: 10.4236/anp.2013.23033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Shen, N. Chi, K.-Y. Chan, et al., “Platinum Nanoparti cles Spontaneously Formed on HOPG,” Applied Surface Science, Vol. 172, No. 1-2, 2001, pp. 159-166. doi:10.1016/S0169-4332(00)00848-5
[2] L. Tamasauskaite, R. Tarozaite and A. Vaskelis, “Elec trocatalytic Properties of Gold Nanoparticles in Oxidation Reactions of Reducing Agents,” Chemija, Vol. 17, No. 4, 2006, pp. 13-19.
[3] L.P. Bicelli, B. Bozzini, C. Mele and L. D’Urzo, “A Re view of Nanostructural Aspects of Metal Electrodeposition,” International Journal of Electrochemical Science, Vol. 3, No. 4, 2008, pp. 356-408.
[4] Z. Tang, S. Liu, S. Dong and E. Wang, “Electrochemical Synthesis of Ag Nanoparticles on Functional Carbon Surfaces,” Journal of Electroanalytical Chemistry, Vol. 502, No. 1-2, 2001, pp. 146-151. doi:10.1016/S0022-0728(01)00344-8
[5] R. G. Song, M. Yamaguchi, O. Nishimura, et al., “Inves tigation of Metal Nanoparticles Produced by Laser Abla tion and Their Catalytic Activity,” Applied Surface Sci ence, Vol. 253, No. 6, 2007, pp. 3093-3097. doi:10.1016/j.apsusc.2006.06.059
[6] B.-X. Chung and C.-P. Liu, “Synthesis of Cobalt Nano particles by DC Magnetron Sputtering and the Effects of Electron Bombardment,” Materials Letters, Vol. 58, No. 9, 2004, pp. 1437-1440. doi:10.1016/j.matlet.2003.06.018
[7] F. W. Campbell and R. G. Compton, “The Use of Nano particles in Electroanalysis: An Updated Review,” Ana lytical and Bioanalytical Chemistry, Vol. 396, No. 1, 2010, pp. 241-259. doi:10.1007/s00216-009-3063-7
[8] Y. Inaba H. Nakata and D. Inoue, “New High Density Recording Technology: Energy Assisted Recording Me dia,” Fuji Electric Review, Vol. 57, No. 2, 2011, pp. 42-45.
[9] K. sendur and W. Challener, “Patterned Medium for Heat Assisted Magnetic Recording,” Applied Physics Letters, Vol. 94, No. 3, 2009, Article ID: 032503.
[10] S. Noel, J. Hermann and T. Itina “Investigation of Na noparticle Generation during Femtosecond Laser Abla tion of Metals,” Applied Surface Science, Vol. 253, No. 15, 2007, pp. 6310-6315. doi:10.1016/j.apsusc.2007.01.081
[11] S.A. Nepijko, D. Kutnyakhov, et al., “Structure and Mag netic Properties of One-Dimensional Chains of Ferro magnetic Nanoparticles,” Applied Physics A, Vol. 109, No. 3, 2012, pp. 699-702. doi:10.1007/s00339-012-7103-3
[12] F. Fendrych, L. Kraus, O. Chayka, et al., “Preparation of Nanostructured Magnetic Films by the Plasma Jet Tech nique,” Monatshefte Fur Chemie, Vol. 133, No. 6, 2002, pp. 773-784. doi:10.1007/s007060200049
[13] M. Zinke-Allmang, L. C. Feldman and M. H. Grabow, “Clustering on Surfaces,” Surface Science Reports, Vol. 16, No. 8, 1992, pp. 377-463. doi:10.1016/0167-5729(92)90006-W
[14] W. Ostwald, “On the Supposed Isomerism of Red and Yellow Mercury Oxide and the Surface Tension of Solid Bodies,” Journal of Physical Chemistry B, Vol. 34, 1900, p. 495.
[15] I. M. Lifshitz and V. V. Slyozov, “The Kinetics of Pre cipitation from Supersaturated Solid Solutions,” Journal of Physics and Chemistry of Solids, Vol. 19, No. 1-2, 1961, pp. 35-50. doi:10.1016/0022-3697(61)90054-3
[16] C. Wagner, “Theorie der Alterung von Niederschlagen durch Umlosen (Ostwald-Reifung),” Z. Elektrochem, Vol. 65, No. 7-8, 1961, p. 581-591.
[17] A. A. Bukharaev, N. V. Berdunov, D. V. Ovchinnikov, et al., “Atomic Force Microscopy for Metrology of Micro and Nanostructures,” Russian Microelectronics, Vol. 26, No. 3, 1997, pp. 137-148.
[18] A. P. Chuklanov, A. A. Bukharaev and S. A. Ziganshina, “Computer Program for the Grain Analysis of AFM Im ages of Nanoparticles Placed on a Rough Surface,” Sur face and Interface Analysis, Vol. 38, No. 4, 2006, pp. 679-681. doi:10.1002/sia.2294
[19] I. Beszeda, E. G. Gontier-moya and A. W. Imre, “Surface Ostwald-Ripening and Evaporation of Gold Beaded Films on Sapphire,” Applied Physics A, Vol. 81, No. 4, 2005, pp. 673-677. doi:10.1007/s00339-005-3254-9
[20] F. Fillot, Zs. Toke and G. P. Beyer, “Surface Diffusion of Copper on Tantalum Substrates by Ostwald Ripening,” Surface Science, Vol. 601, No. 4, 2007, pp. 986-993. doi:10.1016/j.susc.2006.11.037
[21] S. A. Kukushkin and A. V. Osipov, “New Phase Forma tion on Solid Surfaces and Thin Film Condensation,” Progress in Surface Science, Vol. 151, No. 1, 1996, pp. 1-107. doi:10.1016/0079-6816(96)82931-5
[22] [22] S. A. Kukushkin and A. V. Osipov, “Thin-Film Condensation Processes,” Physics Uspekhi, Vol. 41, No. 10, 1998, pp. 983-1014. doi:10.1070/PU1998v041n10ABEH000461

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.