The Antioxidant and Free Radical Scavenging Activities of Chlorophylls and Pheophytins

Abstract

Chlorophylls are important antioxidants found in foods. We explored the mechanisms through which the a and b forms of chlorophyll and of pheophytin (the Mg-chelated form of chlorophyll) reduce oxidation: we used comet assay to measure prevention of H2O2 DNA damage; we tested for quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH); we measured the ability to chelate Fe(II); and, we tested their ability to prevent formation of thiobarbituric acid reactive substances (TBARS) during Cu-mediated peroxidation of low density lipoprotein (LDL) in a chemical assay. All chlorophylls and pheophytins showed significant dose-dependent activity in the assays, with the pheophytins being the strongest antioxidants. Thus, these chemicals can prevent oxidative DNA damage and lipid peroxidation both by reducing reactive oxygen species, such as DPPH, and by chelation of metal ions, such as Fe(II), which can form reactive oxygen species.

Share and Cite:

C. Hsu, P. Chao, S. Hu and C. Yang, "The Antioxidant and Free Radical Scavenging Activities of Chlorophylls and Pheophytins," Food and Nutrition Sciences, Vol. 4 No. 8A, 2013, pp. 1-8. doi: 10.4236/fns.2013.48A001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Block, B. Patterson and A. Subar, “Fruit, Vegetables, and Cancer Prevention: A Review of the Epidemiological Evidence,” Nutrition and Cancer, Vol. 18, No. 1, 1992, pp. 1-29. doi:10.1080/01635589209514201
[2] U. Harttig and G. S. Bailey, “Chemoprotection by Natural Chlorophylls in Vivo: Inhibition of Dibenzo[a,l]pyreneDNA Adducts in Rainbow Trout Liver,” Carcinogenesis, Vol. 19, No. 7, 1998, pp. 1323-1326. doi:10.1093/carcin/19.7.1323
[3] K. I. Takamiya, T. Tsuchiya and H. Ohta, “Degradation Pathway(s) of Chlorophyll: What Has Gene Cloning Revealed?” Trends Plant Science, Vol. 5, No. 10, 2000, pp. 426-431. doi:10.1016/S1360-1385(00)01735-0
[4] M. G. Ferruzzi, M. L. Failla and S. J. Schwartz, “Assessment of Degradation and Intestinal Cell Uptake of Carotenoids and Chlorophyll Derivatives from Spinach Puree Using an in Vitro Digestion and Caco-2 Human Cell Model,” Journal of Agricultural and Food Chemistry, Vol. 49, No. 4, 2001, pp. 2082-2089. doi:10.1021/jf000775r
[5] Y. Endo, R. Usuki and T. Kaneda, “Antioxidant Effects of Chlorophyll and Pheophytin on the Autoxidation of Oil in the Dark II. The Mechanism of Antioxidative Action of Chlorophyll,” Journal of the American Oil Chemists’ Society, Vol. 62, No. 9, 1985, pp. 1387-1390. doi:10.1007/BF02545965
[6] N. Tachino, D. Guo, W. M. Dashwood, S. Yamane, R. Larsen and R. Dashwood, “Mechanisms of the in Vitro Antimutagenic Action of Chlorophyllin against Benzo[a]pyrene: Studies of Enzyme Inhibition, Molecular Complex Formation and Degradation of the Ultimate Carcinogen,” Mutation Research, Vol. 308, No. 2, 1994, pp. 191-203. doi:10.1016/0027-5107(94)90154-6
[7] S. Chernomorsky, A. Segelman and R. D. Poretz, “Effect of Dietary Chlorophyll Derivatives on Mutagenesis and Tumor Cell Growth,” Teratogenesis, Carcinogenesis, and Mutagenesis, Vol. 19, No. 5, 1999, pp. 313-322. doi:10.1002/(SICI)1520-6866(1999)19:5<313::AID-TCM1>3.0.CO;2-G
[8] P. A. Egner, J. B. Wang, Y. R. Zhu, B. C. Zhang, Y. Wu, Q. N. Zhang, G. S. Qian, S. Y. Kuang, S. J. Gange, L. P. Jacobson, K. J. Helzlsouer, G. S. Bailey, J. D. Groopman and T. W. Kensler, “Chlorophyllin Intervention Reduces Aflatoxin-DNA Adducts in Individuals at High Risk for Liver Cancer,” Proceedings of the National Academy of Sciences, Vol. 98, No. 25, 2001, pp. 14601-14606. doi:10.1073/pnas.251536898
[9] J. de Vogel, D. S. Jonker-Termont, M. B. Katan and R. van der Meer, “Natural Chlorophyll But Not Chlorophyllin Prevents Heme-Induced Cytotoxic and Hyperproliferative Effects in Rat Colon,” Journal of Nutrition, Vol. 135, No. 8, 2005, pp. 1995-2000.
[10] M. T. Simonich, P. A. Egner, B. D. Roebuck, G. A. Orner, C. Jubert, C. Pereira, J. D. Groopman, T. W. Kensler, R. H. Dashwood, D. E. Williams and G. S. Bailey, “Natural Chlorophyll Inhibits Aflatoxin B1-Induced Multi-Organ Carcinogenesis in the Rat,” Carcinogenesis, Vol. 28, No. 6, 2007, pp. 1294-1302. doi:10.1093/carcin/bgm027
[11] U. Lanfer-Marquez, R. Barros and P. Sinnecker, “Antioxidant Activity of Chlorophylls and Their Derivatives,” Food Research International, Vol. 38, No. 8, 2005, pp. 885-891. doi:10.1016/j.foodres.2005.02.012
[12] C. Y. Hsu, C. M. Yang, C. M Chen., P. Y. Chao and S. P. Hu, “Effects of Chlorophyll-Related Compounds on Hydrogen Peroxide Induced DNA Damage within Human Lymphocytes,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 7, 2005, pp. 2746-2750. doi:10.1021/jf048520r
[13] M. Sato, K. Imai and T. Murata, “Effect of Sodium Copper Chlorophyllin on Lipid Peroxidation: The Antioxidative Activities of the Commercial Preparations of Sodium Copper Chlorophyllin,” Yakugaku Zasshi, Vol. 100, No. 5, 1980, pp. 580-584.
[14] J. P. Kamat, K. K. Boloor and T. P. Devasagayam, “Chlorophyllin as an Effective Antioxidant against Membrane Damage in Vitro and ex Vivo,” Biochim Biophys Acta, Vol. 1487, No. 2-3, 2000, pp. 113-127. doi:10.1016/S1388-1981(00)00088-3
[15] J. W. Fahey, K. K. Stephenson, A. T. Dinkova-Kostova, P. A. Egner, T. W. Kensler and P. Talalay, “Chlorophyll, Chlorophyllin and Related Tetrapyrroles Are Significant Inducers of Mammalian Phase 2 Cytoprotective Genes,” Carcinogenesis, Vol. 26, No. 7, 2005, pp. 1247-1255. doi:10.1093/carcin/bgi068
[16] S. Kapiotis, M. Hermann, M. Exner, H. Laggner and B. M. Gmeiner, “Copperand Magnesium Protoporphyrin Complexes Inhibit Oxidative Modification of LDL Induced by Hemin, Transition Metal Ions and Tyrosyl Radicals,” Free Radical Research, Vol. 39, No. 11, 2005, pp. 1193-1202. doi:10.1080/10715760500138981
[17] C. M. Yang, K. W. Chang, M. H. Yin and H. M. Huang, “Methods for the Determination of the Chlorophylls and Their Derivatives,” Taiwania, Vol. 43, No. 2, 1998, pp. 116-122.
[18] V. Schumasker and D. Puppione, “Sequential Flotation Ultracentrifugation,” In: J. Segrest and J. Albers, Eds., Methods in Enzymology, Academic Press, San Diego, Vol. 128, 1986, pp. 155-170.
[19] N. P. Singh, M. T. McCoy, R. R. Tice and E. L. Schneider, “A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells,” Experimental Cell Research, Vol. 175, No. 1, 1988, pp. 184-191. doi:10.1016/0014-4827(88)90265-0
[20] T. C. Dinis, V. M. Maderia and L. M. Almeida, “Action of Phenolic Derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers,” Arch Biochem Biophys, Vol. 315, No. 1, 1994, pp. 161-169. doi:10.1006/abbi.1994.1485
[21] B. Wallin, B. Rosengren, H. G. Shertzer and G. Camejo, “Lipoprotein Oxidation and Measurement of Thiobarbituric Acid Reacting Substances Formation in a Single Microtiter Plate: Its Use for Evaluation of Antioxidants,” Analytical Biochemistry, Vol. 208, No. 1, 1993, pp. 10-15. doi:10.1006/abio.1993.1002
[22] K. Yagi, “Assay for Blood or Plasma,” In: L. Packer, Ed., Methods in Enzymology, Oxygen Radical in Biological System, Academic Press, New York, 1984, pp 328-331. doi:10.1016/S0076-6879(84)05042-4
[23] S. Arimoto-Kobayashi, N. Inada, H. Nakano, H. Rai and H. Hayatsu, “Iron-Chlorophyllin-Mediated Conversion of 3-Hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (TrpP-2(NHOH)) into Its Nitroso Derivative,” Mutation Research, Vol. 400, No. 1-2, 1998, pp. 259-269. doi:10.1016/S0027-5107(98)00033-5
[24] R. E. Nelson and M. G. Ferruzzi, “Synthesis and Bioaccessibility of Fe-Pheophytin Derivatives from Crude Spinach Extract,” Journal of Food Science, Vol. 73, No. 5, 2008, pp. H86-H91. doi:10.1111/j.1750-3841.2008.00783.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.