Investigation of Interaction of Some Chalcones and Cyclic Chalcone Analogues with Outer Mitochondrial Membrane by UV-VIS and Fluorescence Spectroscopy

DOI: 10.4236/sar.2013.11001    PDF   HTML     4,093 Downloads   16,020 Views   Citations


Interaction of the synthetic chalcones (1b,1c) and their cyclic analogues (2b,2c) with bovine (BSA) and human serum albumin (HSA) as well as with rat liver mitochondria (RLM) was studied by fluorescence spectroscopy. The maxima of emission fluorescence spectra were changed only in the case of 2b and 2c during interaction with BSA, HSA as well as mitochondrial outer membrane showing a slight hypsochromic shift and decrease of fluorescence. Interaction of the methoxy-(1b,2b) and the dimethylamino-substituted (1c,2c) compounds with outer mitochondrial membrane were studied by fluorescence polarization. Fluorescence polarization of 1b in the presence of the two proteins and mitochondria was found to be unchanged. Under similar conditions (2b,1c,2c) showed continuously increasing fluorescence polarization signal during
the 30 minute period of investigations. Since fluorescence polarization supposes that as a result of binding these substances to proteins and lipids. Compound 2c displayed a continuous increase of fluorescence po
larization signal in the presence of proteins (BSA, HSA), yeast cytoplasm (YC) and mitochondria (YM and RLM). This compound displayed a significant cytotoxic effect. This pattern of interaction with proteins might be one of the contributing vectors of the observed cytotoxicity against several human carcinoma cell lines.

Share and Cite:

V. Tomečková, M. Štefanišinová, B. Veliká, K. Fodor, P. Perjési, M. Stupák, J. Guzy, Š. Tóth Jr and T. Pekárová, "Investigation of Interaction of Some Chalcones and Cyclic Chalcone Analogues with Outer Mitochondrial Membrane by UV-VIS and Fluorescence Spectroscopy," Spectral Analysis Review, Vol. 1 No. 1, 2013, pp. 1-9. doi: 10.4236/sar.2013.11001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. A. Tomas-Berbeeren and M. N. Clifford, “Flavanones, Chalcones and Dihydrochalcones—Nature, Occurrence and Dietary Burden,” Journal of the Science of Food and Agriculture, Vol. 80, No. 7, 2000, pp. 1073-1080. doi:10.1002/(SICI)1097-0010(20000515)80:7<1073::AID-JSFA568>3.0.CO;2-B
[2] J. E. Middleton, C. Kandaswami and T. C. Theoharides, “The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer,” Pharmacological Reviews, Vol. 52, No. 4, 2000, pp. 673-751.
[3] F. Depeint, J. M. Gee, G. Williamson and I. T. Johnson, “Evidence for Consistent Patterns between Flavonoid Structures and Cellular Activities,” Proceedings of the Nutrition Society, Vol. 61, No. 1, 2002, pp. 97-103. doi:10.1079/PNS2001133
[4] M. L. Go, X. Wu and X. L. Liu, “Chalcones: An Update on Cytotoxic and Chemoprotective Properties,” Current Medicinal Chemistry, Vol. 12, No. 4, 2005, pp. 483-499.
[5] J. R. Dimmock, N. M. Kandepu, A. J. Nazarali, T. P. Kowalchuk, N. Motaganahalli, J. W. Quail, P. A. Mykytiuk, G. F. Audette, L. Prasad, P. Perjési, T. M. Allen, C. L. Santos, J. Szydlowski, E. DeClercq and J. Balzarini, “Conformational and Quantitative Structure—Activity Relationship Study of Cytotoxic 2-Arylidenebenzocycloalkanones,” Journal of Medicinal Chemistry, Vol. 42, No. 8, 1999, pp. 1358-1366. doi:10.1021/jm9806695
[6] J. R. Dimmock, G. A. Zello, E. O. Oloo, J. W. Quail, H.-B. Kraatz, P. Perjési, F. Aradi, K. Takács-Novák, T. M. Allen, C. L. Santos, J. Balzarini, E. DeClercq and J. P. Stables, “Correlation between Cytotoxicity and Topography of Some 2-Arylidenebenzocyclanones Determined by X-Ray Crystallography,” Journal of Medicinal Chemistry, Vol. 45, No. 14, 2002, pp. 3103-3111. doi:10.1021/jm010559p
[7] P. Perjési, U. Das, E. De Clercq, J. Balzarini, M. Kawase, H. Sakagami, J. P. Stables, T. Loránd, Z. Rozmer and J. R. Dimmock, “Design, Synthesis and Antiproliferative Activity of Some 3-Benzylidene-2,3-dihydro-1-benzopyran-4-ones Which Display Selective Toxicity for Malignant Cells,” European Journal of Medicinal Chemistry, Vol. 43, No. 4, 2008, pp. 839-845. doi:10.1016/j.ejmech.2007.06.017
[8] K. Fodor, V. Tome?ková, T. Koszegi, I. Kron and P. Perjési, “(E)-2-Benzylidenecyclanones: Part VI. Solvent Effect on the UV and Fluorescence Properties of Some Chalcones and Their Cyclic Analogues. Interaction of 4-Dimethylaminochalcones with Bovine and Human Serum Albumin: A UV-VIS Study,” Monatshefte für Chemie, Vol. 142, No. 5, 2011, pp. 463-468. doi:10.1007/s00706-011-0463-0?
[9] V. Tome?ková, P. Perjési, J. Guzy, J. Kusnir, Z. Chovanová, Z. Chavková and M. Mareková, “Comparison of Effect of Selected Synthetic Chalcone Analogues on Mitochondrial Outer Membrane Determined by Fluores- cence Spectroscopy,” Journal of Biochemical and Biophysical Methods, Vol. 61, No. 1-2, 2004, pp. 135-141. doi:10.1016/j.jbbm.2004.04.010
[10] P. Perjési, T. Nusser, G. Tarczay and P. Sohar, “E-2-Benzylidenebenzocycloalkanones. Stereostructure and NMR Spectroscopic Investigation,” Journal of Molecular Structure, Vol. 479, No. 1, 1999, pp. 13-19. doi:10.1016/S0022-2860(98)00805-9
[11] D. Johnson and H. Lardy, “Isolation of Rat Liver and Kidney Mitochondria,” Methods in Enzymology, Vol. 10, 1967, pp. 94-96. doi:10.1016/0076-6879(67)10018-9
[12] M. M. Bradford, “A Rapid and Sensitive for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,” Analytical Biochemistry, Vol. 72, No. 1-2, 1976, pp. 248-254. doi:10.1016/0003-2697(76)90527-3
[13] E. Zinser and G. Daum, “Isolation and Biochemical Characterisation of Organelles Form the Yeast, Saccharomyces cerevisiae,” Yeast, Vol. 11, No. 6, 1995, pp. 493- 536. doi:10.1002/yea.320110602
[14] O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. Ramdall, “Protein Measurement with the Folin Phenol Reagent,” Journal of Biological Chemistry, Vol. 193, No. 1, 1951, pp. 265-275.
[15] W. J. Checovich, R. E. Bolger and T. Burke, “Fluorescence Polarization—A New Tool for Cell and Molecular Biology,” Nature, Vol. 375, 1995, pp. 253-256. doi:10.1038/375254a0
[16] B. J. Litman and Y. Barenholz, “Fluorescence Probe: Difenylhexatriene,” Methods in Enzymology, Vol. 81, 1982, pp. 678-685. doi:10.1016/S0076-6879(82)81093-8
[17] J. R. Lakowicz, “Principles of Fluorescence Spectroscopy,” 2nd Edition, Kluwer Academic/Plenum Publishers, New York, 1999. doi:10.1007/978-1-4757-3061-6
[18] J. T. Vivian and P. R. Callis, “Mechanisms of Tryptophan Fluorescence Shifts in Proteins,” Biophysical Journal, Vol. 80, No. 5, 2001, pp. 2093-2109. doi:10.1016/S0006-3495(01)76183-8
[19] S. Gorinstein, I. Goshev, S. Moncheva, M. Zemser, M. Weisz, A. Caspi, I. Libman, H. T. Lerner, S. Trakhtenberg and O. Martín-Belloso, “Intrinsic Tryptophan Fluorescence of Human Serum Proteins and Related Conformational Changes,” Journal of Protein Chemistry, Vol. 19, No. 8, 2000, pp. 637-642. doi:10.1023/A:1007192017291
[20] D. Leckband, “Measuring the Forces that Control Protein Interactions,” Annual Review of Biophysics and Biomolecular Structure, Vol. 29, 2000, pp. 1-26. doi:10.1146/annurev.biophys.29.1.1
[21] L. A. Sklar, “Chapter 3. Fluorescence Polarization Studies of Membrane Fluidity: Where Do We Go from Here?” In: Biomembranes, Plenum Press, New York, 1984, pp. 99-131.
[22] M. Shinitzky and Y. Berenholz, “Fluidity Parameters of Lipid Regions Determined by Fluorescence Polarization,” Biochimica et Biophysica Acta, Vol. 515, No. 4, 1978, pp. 367-394. doi:10.1016/0304-4157(78)90010-2
[23] B. H. Havsteen, “The Biochemistry and Medical Significance of the Flavonoids,” Pharmacology and Therapeutics, Vol. 96, No. 2-3, 2002, pp. 67-202. doi:10.1016/S0163-7258(02)00298-X

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.