Trivalent Chromium Modulates Hexosamine Biosynthesis Pathway Transcriptional Activation of Cholesterol Synthesis and Insulin Resistance

Abstract

Trivalent chromium has long been recognized to benefit carbohydrate and lipid metabolism. Given emerging evidence that suggests chromium improves insulin sensitivity through the maintenance of an optimal level of plasma membrane (PM) cholesterol, we delineated the role of this micronutrient in attenuating hyperinsulinemia-induced cholesterol biosynthesis and insulin resistance. Exposing 3T3-L1 adipocytes to physiological hyperinsulinemia (500 pM 12 h), resulted in a marked impairment in insulin-stimulated glucose transport. Concurrent treatment with chromium in the picolinate form (CrPic, 10 nM 16 h) prevented against glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemia nor amplified by chromium to promote this protective action. Instead, it was found that hyperinsulinemia promoted an increase in PM cholesterol content that was observed to impair the acute ability of insulin to stimulate GLUT4 redistribution to the PM. Chromium prevented against the accumulation of PM cholesterol. Mechanistically, hyperinsulinemia promoted increases in O-GlcNAc modification of specificity protein 1 (Sp1), known to engage a cholesterolgenic response. Subsequent chromatin immunoprecipitation and luciferase assays revealed that hyperinsulinemia increased the binding affinity of Sp1 to the promoter region of Hmgcr, encoding 3-hydroxy 3-methyl-glutaryl-CoA reductase (HMGR), as well as HMGR promoter activity. This resulted in gains in mRNA and protein content of HMGR, with resulting elevations in PM cholesterol content. Moreover, treatment with chromium prevented this transcriptional response. Together, these data suggest a mechanism whereby CrPic affords glycemic health through inhibition of a transcriptional cholesterolgenic program detrimental to insulin action.

Share and Cite:

B. Penque, L. Tackett and J. Elmendorf, "Trivalent Chromium Modulates Hexosamine Biosynthesis Pathway Transcriptional Activation of Cholesterol Synthesis and Insulin Resistance," Open Journal of Endocrine and Metabolic Diseases, Vol. 3 No. 4A, 2013, pp. 1-8. doi: 10.4236/ojemd.2013.34A1001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. A. Anderson, et al., “Elevated Intakes of Supplemental Chromium Improve Glucose and Insulin Variables in Individuals with Type 2 Diabetes,” Diabetes, Vol. 46, No. 11, 1997, pp. 1786-1791. doi:10.2337/diabetes.46.11.1786
[2] E. M. Balk, A. Tatsioni, A. H. Lichtenstein, J. Lau and A. G. Pittas, “Effect of Chromium Supplementation on Glucose Metabolism and Lipids: A Systematic Review of Randomized Controlled Trials,” Diabetes Care, Vol. 30, No. 8, 2007, pp. 2154-2163. doi:10.2337/dc06-0996
[3] S. R. Surani, I. Ratnani, B. Guntupalli and S. Bopparaju, “Severe Insulin Resistance Treatment with Intravenous Chromium in Septic Shock Patient,” World Journal of Diabetes, Vol. 3, No. 9, 2012, pp. 170-173. doi:10.4239/wjd.v3.i9.170
[4] Chen. G., et al., “Chromium Activates Glucose Transporter 4 Trafficking and Enhances Insulin-Stimulated Glucose Transport in 3T3-L1 Adipocytes via a Cholesterol-Dependent Mechanism,” Molecular Endocrinology, Vol. 20, No. 4, 2006, pp. 857-870. doi:10.1210/me.2005-0255
[5] G. W. Evans and T. D. Bowman, “Chromium Picolinate Increases Membrane Fluidity and Rate of Insulin Internalization,” Journal of Inorganic Biochemistry, Vol. 46, No. 4, 1992, pp. 243-250. doi:10.1016/0162-0134(92)80034-S
[6] G. R. Pattar, L. Tackett, P. Liu and J. S. Elmendorf, “Chromium Picolinate Positively Influences the Glucose Transporter System via Affecting Cholesterol Homeostasis in Adipocytes Cultured under Hyperglycemic Diabetic Conditions,” Mutation Research, Vol. 610, No. 1-2, 2006, pp. 93-100. doi:10.1016/j.mrgentox.2006.06.018
[7] D. L. Brautigan, A. Kruszewski and H. Wang, “Chromium and Vanadate Combination Increases Insulin-Induced Glucose Uptake by 3T3-L1 Adipocytes,” Biochemical and Biophysical Research Communications, Vol. 347, No. 3, 2006, pp. 769-773. doi:10.1016/j.bbrc.2006.06.154
[8] P. Bhonagiri, et al., “Evidence Coupling Increased Hexosamine Biosynthesis Pathway Activity to Membrane Cholesterol Toxicity and Cortical Filamentous Actin Derangement Contributing to Cellular Insulin Resistance,” Endocrinology, Vol. 152, No. 9, 2011, pp. 3373-3384. doi:10.1210/en.2011-1295
[9] K. M. Habegger, N. J. Hoffman, C. M. Ridenour, J. T. Brozinick and J. S. Elmendorf, “AMPK Enhances Insulin-Stimulated GLUT4 Regulation via Lowering Membrane Cholesterol,” Endocrinology, Vol. 153, No. 5, 2012, pp. 2130-2141. doi:10.1210/en.2011-2099
[10] K. M. Habegger, et al., “Fat-Induced Membrane Cholesterol Accrual Provokes Cortical Filamentous Actin Destabilisation and Glucose Transport Dysfunction in Skeletal Muscle,” Diabetologia, Vol. 55, No. 2, 2012, pp. 457-467. doi:10.1007/s00125-011-2334-y
[11] A. M. McCarthy, K. O. Spisak, J. T. Brozinick and J. S. Elmendorf, “Loss of Cortical Actin Filaments in Insulin-Resistant Skeletal Muscle Cells Impairs GLUT4 Vesicle Trafficking and Glucose Transport,” American Journal of Physiology Cell Physiology, Vol. 291, No. 5, 2006, pp. C860-C868. doi:10.1152/ajpcell.00107.2006
[12] B. A. Penque, A. M. Hoggatt, B. P. Herring and J. S. Elmendorf, “Hexosamine Biosynthesis Impairs Insulin Action via a Cholesterolgenic Response,” Molecular Endocrinology, 2013. doi:10.1210/me.2012-1213
[13] W. Sealls, B. A. Penque and J. S. Elmendorf, “Evidence That Chromium Modulates Cellular Cholesterol Homeostasis and ABCA1 Functionality Impaired by Hyperinsulinemia—Brief Report,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 31, No. 5, 2011, pp. 1139-1140. doi:10.1161/ATVBAHA.110.222158
[14] H. Green and M. Meuth, “An Established Pre-Adipose Cell Line and Its Differentiation in Culture,” Cell, Vol. 3, No. 2, 1974, pp. 127-133. doi:10.1016/0092-8674(74)90116-0
[15] T. F. Osborne, G. Gil, M. S. Brown, R. C. Kowal and J. L. Goldstein, “Identification of Promoter Elements Required for in Vitro Transcription of Hamster 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Gene,” Proceedings of National Academy of Science of USA, Vol. 84, No. 11, 1987, pp. 3614-3618. doi:10.1073/pnas.84.11.3614
[16] T. F. Osborne, J. L. Goldstein and M. S. Brown, “5’ End of HMG CoA Reductase Gene Contains Sequences Responsible for Cholesterol-Mediated Inhibition of Transcription,” Cell, Vol. 42, No. 1, 1985, pp. 203-212. doi:10.1016/S0092-8674(85)80116-1
[17] G. Chen, et al., “Protective Effect of Phosphatidylinositol 4,5-Bisphosphate against Cortical Filamentous Actin Loss and Insulin Resistance Induced by Sustained Exposure of 3T3-L1 ADipocytes to Insulin,” The Journal of Biological Chemistry, Vol. 279, No. 38, 2004, pp. 39705-39709. doi:10.1074/jbc.C400171200
[18] Y. Ng, G. Ramm and D. E. James, “Dissecting the Mechanism of Insulin Resistance Using a Novel Heterodimerization Strategy to Activate Akt,” The Journal of Biological Chemistry, Vol. 285, No. 8, 2010, pp. 5232-5239. doi:10.1074/jbc.M109.060632
[19] K. A. Robinson and M. G. Buse, “Mechanisms of High-Glucose/Insulin-Mediated Desensitization of Acute Insulin-Stimulated Glucose Transport and Akt Activation,” American Journal of Physiology—Endocrinology and Metabolism, Vol. 294, No. 5, 2008, pp. E870-E881. doi:10.1152/ajpendo.00644.2007
[20] W. Xiong, I. Jordens, E. Gonzalez and T. E. McGraw, “GLUT4 Is Sorted to Vesicles Whose Accumulation Beneath and Insertion into the Plasma Membrane Are Differentially Regulated by Insulin and Selectively Affected by Insulin Resistance,” Molecular Biology of the Cell, Vol. 21, No. 8, 2010, pp. 1375-1386. doi:10.1091/mbc.E09-08-0751
[21] W. T. Cefalu, Z. Q. Wang, X. H. Zhang, L. C. Baldor and J. C. Russell, “Oral Chromium Picolinate Improves Carbohydrate and Lipid Metabolism and Enhances Skeletal Muscle Glut-4 Translocation in Obese, Hyperinsulinemic (JCR-LA Corpulent) Rats,” Journal of Nutrition, Vol. 132, No. 6, 2002, pp. 1107-1114.
[22] F. Dong, M. R. Kandadi, J. Ren and N. Sreejayan, “Chromium (D-phenylalanine)3 Supplementation Alters Glucose Disposal, Insulin Signaling, and Glucose Transporter-4 Membrane Translocation in Insulin-Resistant Mice,” Journal of Nutrition, Vol. 138, No. 10, 2008, pp. 1846-1851.
[23] M. R. Kandadi, et al., “Chromium (D-Phenylalanine)3 Alleviates High Fat-Induced Insulin Resistance and Lipid Abnormalities,” Journal of Inorganic Biochemistry, Vol. 105, No. 1, 2011, pp. 58-62. doi:10.1016/j.jinorgbio.2010.09.008
[24] Z. Q. Wang, X. H. Zhang, J. C. Russell, M. Hulver and W. T. Cefalu, “Chromium Picolinate Enhances Skeletal Muscle Cellular Insulin Signaling in Vivo in Obese, Insulin-Resistant JCR:LA-Cp Rats,” Journal of Nutrition, Vol. 136, No. 2, 2006, pp. 415-420.
[25] H. J. Goldberg, C. I. Whiteside, G. W. Hart and I. G. Fantus, “Posttranslational, Reversible O-Glycosylation Is Stimulated by High Glucose and Mediates Plasminogen Activator Inhibitor-1 Gene Expression and Sp1 Transcriptional Activity in Glomerular Mesangial Cells,” Endocrinology, Vol. 147, No. 1, 2006, pp. 222-231. doi:10.1210/en.2006-0523
[26] C. Brasse-Lagnel, A. Fairand, A. Lavoinne and A. Husson, “Glutamine Stimulates Argininosuccinate Synthetase Gene Expression through Cytosolic O-Glycosylation of Sp1 in Caco-2 Cells,” The Journal of Biological Chemistry, Vol. 278, No. 52, 2003, pp. 52504-52510. doi:10.1074/jbc.M306752200
[27] G. Majumdar, et al., “Insulin Dynamically Regulates Calmodulin Gene Expression by Sequential O-Glycosylation and Phosphorylation of Sp1 and Its Subcellular Compartmentalization in Liver Cells,” The Journal of Biological Chemistry, Vol. 281, No. 6, 2006, pp. 3642-3650. doi:10.1074/jbc.M511223200
[28] I. Han and J. E. Kudlow, “Reduced O Glycosylation of Sp1 Is Associated with Increased Proteasome Susceptibility,” Molecular Cell Biology, Vol. 17, No. 5, 1997, pp. 2550-2558.
[29] C. Weigert, et al., “Palmitate-Induced Activation of the Hexosamine Pathway in Human Myotubes: Increased Expression of Glutamine: Fructose-6-Phosphate Aminotransferase,” Diabetes, Vol. 52, No. 3, 2003, pp. 650-656. doi:10.2337/diabetes.52.3.650
[30] Y. Q. Wang, Y. Dong and M. H. Yao, “Chromium Picolinate Inhibits Resistin Secretion in Insulin-Resistant 3T3-L1 Adipocytes via Activation of Amp-Activated Protein Kinase,” Clinical and Experimental Pharmacology and Physiology, Vol. 36, No. 8, 2009, pp. 843-849. doi:10.1111/j.1440-1681.2009.05164.x
[31] P. Zhao, et al., “A Newly Synthetic Chromium ComplexChromium (D-Phenylalanine)3 Activates AMP-Activated Protein Kinase and Stimulates Glucose Transport,” Biochemical Pharmacology, Vol. 77, No. 6, 2009, pp. 1002-1010. doi:10.1016/j.bcp.2008.11.018
[32] S. Eguchi, et al., “AMP-Activated Protein Kinase Phosphorylates Glutamine: Fructose-6-phosphate Amidotransferase 1 at Ser243 to Modulate Its Enzymatic Activity,” Genes Cells, Vol. 14, No. 2, 2009, pp. 179-189. doi:10.1111/j.1365-2443.2008.01260.x
[33] S. P. Davies, N. R. Helps, P. T. Cohen and D. G. Hardie, “5’-AMP Inhibits Dephosphorylation, as Well as Promoting Phosphorylation, of the AMP-Activated Protein Kinase. Studies Using Bacterially Expressed Human Protein Phosphatase-2C Alpha and Native Bovine Protein Phosphatase-2AC,” FEBS Letters, Vol. 377, No. 3, 1995, pp. 421-425. doi:10.1016/0014-5793(95)01368-7
[34] D. G. Hardie, F. A. Ross and S. A. Hawley, “AMPK: A Nutrient and Energy Sensor That Maintains Energy Homeostasis,” Nature Reviews Molecular Cell Biology, Vol. 13, No. 4, 2012, pp. 251-262. doi:10.1038/nrm3311
[35] J. S. Oakhill, et al., “AMPK Is A Direct Adenylate Charge-Regulated Protein Kinase,” Science, Vol. 332, No. 6036, 2011, pp. 1433-1435. doi:10.1126/science.1200094
[36] B. Xiao, et al., “Structure of Mammalian AMPK and Its Regulation by ADP,” Nature, Vol. 472, No. 7342, 2011, pp. 230-233. doi:10.1038/nature09932
[37] D. C. Love and J. A. Hanover, “The Hexosamine Signaling Pathway: Deciphering the ‘O-GlcNAc Code’,” Science STKE, Vol. 2005, No. 312, 2005, p. re13.
[38] R. Fujiki, et al., “GlcNAcylation of Histone H2B Facilitates Its Monoubiquitination,” Nature, Vol. 480, No. 7378, 2011, pp. 557-560.
[39] H. Khosravi-Boroujeni, A. Rostami, S. Ravanshad and A. Esmaillzadeh, “Favorable Effects on Metabolic Risk Factors with Daily Brewer’s Yeast in Type 2 Diabetic Patients with Hypercholesterolemia: A Semi-Experimental Study,” Journal of Diabetes, Vol. 4, No. 2, 2012, pp. 153-158. doi:10.1111/j.1753-0407.2011.00163.x
[40] R. Riales and M. J. Albrink, “Effect of Chromium Chloride Supplementation on Glucose Tolerance and Serum Lipids including High-Density Lipoprotein of Adult Men,” American Journal of Clinical Nutrition, Vol. 34, No. 12, 1981, pp. 2670-2678.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.