Microstructures, Textures and Mechanical Properties Evolution during Cold Drawing of Pure Mg

DOI: 10.4236/mr.2013.12003   PDF   HTML   XML   5,464 Downloads   13,317 Views   Citations


Pure Mg wires with a maximum cumulative area reduction of 98% were obtained by successful cold drawing. Mechanical properties, microstructures and texture evolution of the as-drawn wires were investigated by tensile tests, transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD). Depended on the mechanical properties and microstructure evolution, continuous dynamic recrystallization (DRX) had taken place during the cold drawing process. DRX during cold deformation has not been reported in other literatures before.

Share and Cite:

Qiao, Y. , Wang, X. , Liu, Z. and Wang, E. (2013) Microstructures, Textures and Mechanical Properties Evolution during Cold Drawing of Pure Mg. Microscopy Research, 1, 8-15. doi: 10.4236/mr.2013.12003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. L. Mordike, T. Ebert, “Magnesium: Properties—Applications—Potential,” Materials Science and Engineering: A, Vol. 302, No. 1, 2001, pp. 37-45. doi:10.1016/S0921-5093(00)01351-4
[2] A. Styczynski, C. Hartig, J. Bohlen and D. Letzig, “Cold Rolling Textures in AZ31 Wrought Magnesium Alloy,” Scripta Materialia, Vol. 50, No. 7, 2004, pp. 943-947. doi:10.1016/j.scriptamat.2004.01.010
[3] H. Y. Wu and F. Z. Lin, “Mechanical Properties and Strain-Hardening Behavior of Mg Alloy AZ31B-H24 Thin Sheet,” Materials Science and Engineering: A, Vol. 527, No. 4-5, 2010, pp. 1194-1199. doi:10.1016/j.msea.2009.09.049
[4] Z. Trojanova, Z. Drozd, P. Lukac and F. Chmelik, “Deformation Behaviour of Mg-Li Alloys at Elevated Temperatures,” Materials Science and Engineering: A, Vol. 410-411, 2005, pp. 148-151. doi:10.1016/j.msea.2005.08.088
[5] T. Samman and G. Gottstein, “Room Temperature Formability of a Magnesium AZ31 Alloy: Examining the Role of Texture on the Deformation Mechanisms,” Materials Science and Engineering: A, Vol. 488, No. 1-2, 2008, pp. 406-414. doi:10.1016/j.msea.2007.11.056
[6] Y. Chino, H. Iwasaki and M. Mabuchi, “Stretch Formability of AZ31 Mg Alloy Sheets at Different Testing Temperatures,” Materials Science and Engineering: A, Vol. 466, No. 1-2, 2007, pp. 90-95. doi:10.1016/j.msea.2007.02.027
[7] C. H. Caceres and A. H. Blake, “On the Strain Hardening Behaviour of Magnesium at Room Temperature,” Materials Science and Engineering: A, Vol. 462, No. 1-2, 2007, pp. 193-196. doi:10.1016/j.msea.2005.12.113
[8] S. E. Ion, F. J. Humphreys and S. H. White, “Dynamic Recrystallisation and the Development of Microstructure during the High Temperature Deformation of Magnesium,” Acta Metallurgica, Vol. 30, No. 10, 1982, pp. 1909- 1919. doi:10.1016/0001-6160(82)90031-1
[9] R. Kaibyshev and O. Sitdikov, “Recrystallization and Related Phenomena (ReX’96),” MIAS, Vol. 20, 1997, pp. 287-294.
[10] A. Galiyev, R. Kaibyshev and G. Gottstein, “Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60,” Acta Materialia, Vol. 49, No. 7, 2001, pp. 1199-1207. doi:10.1016/S1359-6454(01)00020-9
[11] O. Sitdikov, K. Kaibyshev and T. Sakai, “Dynamic Recrystallization Based on Twinning in Coarse-Grained Mg,” Materials Science Forum, Vol. 419-422, 2003, pp. 521- 526. doi:10.4028/www.scientific.net/MSF.419-422.521
[12] E. Hormbogen and U. Koster, In: F. Haessner, Riederer, Eds., Materials, Verlag, Berlin, 1978, p. 159.
[13] E. Hornbogen, “Combined Reactions,” Metallurgical Transactions A, Vol. 10, No. 8, 1979, pp. 947-972. doi:10.1007/BF02811643
[14] H. J. McQueen and J. J. Jonas, “Treatise on Materials Science and Technology,” In: R. J. Arsenault, Ed., Vol. 6, Academic Press, New York, 1975, pp. 393-493.
[15] E. Nes, “Strain-Induced Continuous Recrystallization in Zr-Bearing Aluminium Alloys,” Journal of Materials Science, Vol. 13, No. 9, 1978, pp. 2052-2055. doi:10.1007/BF00552917
[16] E. Nes, Metal Science Journal, Vol. 13, 1979, pp. 211- 220.
[17] R. D. Doherty, G. Gottstein, J. Hirsch, W. B. Hutchinson, K. Lucke, E. Nes and P. J. Wilbrandt, Proc. ICOTOM8, TMS, Warrendale, 1988, pp. 563-572.
[18] F. J. Humphreys and M. Hatherly, “Recrystallization and Related Annealing Phenomena,” Oxford, Pergamon, 1995, pp. 120-123.
[19] X. Yang, H. Miuna and T. Sakai, “Dynamic Evolution of New Grains in Magnesium Alloy AZ31 during Hot Deformation,” Materials Transactions, Vol. 44, No. 1, 2003, pp. 197-203. doi:10.2320/matertrans.44.197
[20] H. Yamagata, “In Situ Observation of Dynamic Recrystallization in Five-Nine Aluminum by a Transmission Laue Method,” Scripta Metallurgica et Materialia, Vol. 30, No. 4, 1994, pp. 411-416. doi:10.1016/0956-716X(94)90595-9
[21] M. E. Kassner, H. J. McQueen, J. Pollard, E. Evangelista and E. Cerri, “Restoration Mechanisms in Large-Strain Deformation of High Purity Aluminum at Ambient Temperature,” Scripta Metallurgica et Materialia, Vol. 31, No. 10, 1994, pp. 1331-1336. doi:10.1016/0956-716X(94)90113-9

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.