} } }; xhr2.open('GET', encodeURI(sUrl), bAsync); xhr2.send('Null'); } } function SetSearchLink(item) { var url = "../journal/recordsearchinformation.aspx"; var skid = $(":hidden[id$=HiddenField_SKID]").val(); var args = "skid=" + skid; url = url + "?" + args + "&urllink=" + item; window.setTimeout("showSearchUrl('" + url + "')", 300); } function showSearchUrl(url) { var callback2 = function (xhr2) { } ajax2.get(url, true, callback2, "try"); }
APM> Vol.3 No.5, August 2013
Share This Article:
Cite This Paper >>

A Comment on “On Humbert Matrix Polynomials of Two Variables”

Abstract Full-Text HTML XML Download Download as PDF (Size:46KB) PP. 470-471
DOI: 10.4236/apm.2013.35066    3,735 Downloads   5,627 Views   Citations
Author(s)    Leave a comment
Vicente Soler Basauri

Affiliation(s)

Departamento de Matemática Aplicada, Universitat Politècnica de València, Valencia, Spain.

ABSTRACT

In this comment we will demonstrate that one of the main formulas given in Ref. [1] is incorrect.

KEYWORDS

Humbert Matrix Polynomials

Cite this paper

V. Basauri, "A Comment on “On Humbert Matrix Polynomials of Two Variables”," Advances in Pure Mathematics, Vol. 3 No. 5, 2013, pp. 470-471. doi: 10.4236/apm.2013.35066.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. S. Khammash and A. Shehata, “On Humbert Matrix Polynomials of Two Variables,” Advances in Pure Mathematics, Vol. 2, No. 6, 2012, pp. 423-427.
[2] T. S. Chihara, “An Introduction to Orthogonal Polynomials,” Gordon and Breach, New York, 1978.
[3] N. N. Lebedev, “Special Functions and Their Applications,” 2nd Edition, Dover Pub-lications, INC., New York, 1972.
[4] L. Jódar, R. Company and E. E. Ponsoda, “Orthogonal Matrix Polynomials and Systems of Second Order Differential Equations,” Differential Equations and Dynamical Systems, Vol. 3, No. 3, 1995, pp. 269-288.
[5] L. Jódar, R. Company and E. Navarro, “Laguerre Matrix Polynomials and Systems of Second Order Differential Equations,” Applied Numeric Mathematics, Vol. 15, No. 1, 1994, pp. 53-64. doi:10.1016/0168-9274(94)00012-3
[6] L. Jódar and R. Company, “Hermite Matrix Polynomials and Second Order Matrix Differential Equations,” Journal of Approximation Theory and its Applications, Vol. 12, No. 2, 1996, pp. 20-30.
[7] E. Defez, L. Jódar and A. G. Law, “Jacobi Matrix Differential Equation, Polynomial Solutions, and Their Properties,” Computers and Mathematics with Applications, Vol. 48, No. 5-6, 2004, pp. 789-803.
[8] E. Defez and L. Jódar, “Chebyshev Matrix Polynomials and Second Order Matrix Differential Equations,” Utilitas Mathematica, Vol. 61, 2002, pp. 107-123.
[9] E. Defez and L. Jódar, “Some Applications of the Hermite Matrix Polynomials Series Expansions,” Journal of Computational and Applied Mathematics, Vol. 99, No. 1-2, 1998, pp. 105-117. doi:10.1016/S0377-0427(98)00149-6
[10] E. Defez, M. M. Tung and J. Sastre, “Improvement on the Bound of Hermite Matrix Polynomials,” Linear Algebra and Its Applications, Vol. 434, No. 8, 2011, pp. 1910-1919. doi:10.1016/j.laa.2010.12.015
[11] J. Sastre, J. J. Ibánez, E. Defez and P. Ruiz, “Efficient Orthogonal Matrix Polynomial Based Method for Computing Matrix Exponential,” Applied Mathematics and Computation, Vol. 217, No. 14, 2011, pp. 6451-6463. doi:10.1016/j.amc.2011.01.004
[12] J. Sastre, J. J. Ibánez, E. Defez and P. Ruiz, “Computing Matrix Functions Solving Coupled Differential Models,” Mathematical and Computer Modelling, Vol. 50, No. 5-6, 2009, pp. 831-839. doi:10.1016/j.mcm.2009.05.012
[13] A. Durán and F. A. Grünbaum, “A Survey on Orthogonal Matrix Polynomials Satisfying Second Order Differential Equations,” Journal of Computational and Applied Mathematics, Vol. 178, No. 1-2, 2005, pp. 169-190. doi:10.1016/j.cam.2004.05.023

  
comments powered by Disqus
APM Subscription
E-Mail Alert
APM Most popular papers
Publication Ethics & OA Statement
APM News
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.