Analysis of Microdisk/Microring’s Surface Roughness Effect by Orthogonal Decomposition


Application of micro-resonator is limited by different types of surface inhomogeneity. The 1-th derivative of inhomogeneity (i.e. Δrˊ(φ)) affects the wave transport as well as the height of inhomogeneity (i.e. Δrˊ(φ)). A method based on orthogonal decomposition is proposed to analysis both scattering mechanism respectively. Then surface roughness effect on Q-factor of micro-disk waveguide gallery mode (WGM) resonator is investigated with our method and the analysis fits well with FDTD simulation results.

Share and Cite:

C. Sui, Q. Wang, S. Xiao and P. Li, "Analysis of Microdisk/Microring’s Surface Roughness Effect by Orthogonal Decomposition," Optics and Photonics Journal, Vol. 3 No. 2B, 2013, pp. 288-292. doi: 10.4236/opj.2013.32B068.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Soref, “The past, present, and future of silicon photonics,” IEEE Journal of Selected Topics in Quantum Electronics, Vol.12, No.6, 2006, pp.1678-1687. doi:10.1109/JSTQE.2006.883151
[2] M. Soltani, S. Yegna-narayanan and A. Adibi, “Ultra-High Q Planar Silicon Microdisk Resonators for Chip-Scale Silicon Photonics,” Optics Ex-press, Vol.15, No.8, 2007, pp.4694-4704. doi:10.1364/OE.15.004694
[3] L.Q. Ren, X. Wu, M. Li, X. Zhang, L. Liu, and L. Xu, “Ultrasensitive Label-Free Coupled Optofluidic Ring Laser Sensor,” Optics Letters, Vol.37, No.18, 2012, pp.3873-3875. doi:10.1364/OL.37.003873
[4] Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Optics Express,Vol. 20,No.14, 2012, pp.15079-15085. doi:10.1364/OE.20.015079
[5] Q. Li, A. A. Eftekhar, “Azimuthal-Order Variations of Surface-Roughness-Induced Mode Splitting and Scatteringloss in High-Q Microdisk Resonators,” Optics Letters, Vol. 37, No.9, 2012, pp. 1586-1588. doi:10.1364/OL.37.001586
[6] E. Ganapolskii and Z. Eremenko, “Effect of Random Surface Inhomogeneities on Spectral Properties of Dielectric-Disk Microresonators: Theory and Modeling at Millimeter Wave Range,” Physical Review E, Vol.79, No.4, 2009, p. 041136. doi:10.1103/PhysRevE.79.041136
[7] M. Borselli, T. J. Johnson and O. Painter, “Beyond the Rayleigh Scattering Limit in High-Q Silicon Microdisks: Theory and Experiment,” Optics Express, Vol.13, No.5, 2005, p.1515. doi:10.1364/OPEX.13.001515
[8] X. Yi and Y. Xiao, “Multiple-Rayleigh-Scatterer Induced Mode Splitting in A High-Q Whispering-Gallery-Mode Microresonator,” Physical Review A, Vol.83, No.2, 2011, p. 023803. doi:10.1103/PhysRevA.83.023803
[9] S. Cho and S. Koo, “Surface Roughness Effect on Q-Factor of Ge Whispering Gallery Mode Microdisk Resonator,” Optical Society of America, 2011.
[10] N. M. Makarov and Y. V. Tarasov, “Electron Localization in Narrow Surface-Corrugated Conducting Channels: Manifestation of Competing Scattering Mechanisms,” Physical Review B, Vol. 64, No.23, 2001, p. 235306. doi:10.1103/PhysRevB.64.235306
[11] H.-Y. Yu, M. Ishibashi, J. -H. Park, M. Kobayashi, and K. C. Saraswat, "p-Channel Ge MOSFET by Selectively Heteroepitaxially Grown Geon Si,” IEEE Electron Device Letters, Vol. 30, No. 6, 2009, pp. 675-677. doi:10.1109/LED.2009.2019847
[12] W. A. Gardener, “Introduction to Random Processes: With Applications to Signals and Systems,” New York, NY: McGraw-Hill 1990
[13] R. A. Horn and C. R. Johnson, “Matrix Analysis,” Cambridge University Press, Cambridge, 1990.
[14] E. Kreyszig, “Introductory functional analysis with applications,” John Wiley & Sons, New York, 1989.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.