The Relative Importance of Natural Disturbances and Local Site Factors on Woody Vegetation Regeneration Diversity across a Large, Contiguous Forest Region

Abstract

Stand-level diversity after natural disturbance can potentially differ across a large, contiguous forest region despite being dominated by the same canopy species throughout as differences in disturbance types and local site conditions can regulate species distribution. Our main objective was to examine the relative importance of natural disturbances (spruce budworm (Choristoneura fumiferana) outbreak, windthrow, and their interaction) and local site factors (climate, physiography, and stand structure and composition variables) on woody vegetation diversity among three, physiographically distinct locations across a large, contiguous forest region. Seventy-six Abies balsamea-Betula spp. stands affected by natural disturbance were compared and analysed using canonical ordination methods, diversity indices, and ANOVA. Different combinations of factors were important for vegetation re-establishment at each location. Differences in alpha (α), beta (β), gamma (γ), Shannon’s H’, and evenness (J) diversity indices were observed among locations across the study region. Our findings indicate that while certain processes are important for maintaining canopy dominance by Abies balsamea and Betula spp. throughout the region, different combinations of factors were important for creating variation in woody species diversity among locations that resulted in greater woody species diversity at the regional scale. 

 

Share and Cite:

Reyes, G. , Kneeshaw, D. & Grandpré, L. (2013). The Relative Importance of Natural Disturbances and Local Site Factors on Woody Vegetation Regeneration Diversity across a Large, Contiguous Forest Region. Open Journal of Forestry, 3, 88-98. doi: 10.4236/ojf.2013.33015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Baskerville, G. L. (1975). Spruce budworm: Super silviculturist. The Forestry Chronicle, 51, 138-140.
[2] Belote, R. T., Sanders, N. J., & Jones, R. H. (2009). Disturbance alters local-regional richness relationships in Appalachian forests. Ecology, 90, 2940-2947. doi:10.1890/08-1908.1
[3] Bergeron, Y. (2000). Species and stand dynamics in the mixed woods of Quebec’s southern boreal forest. Ecology, 81, 1500-1516. doi:10.1890/0012-9658(2000)081[1500:SASDIT]2.0.CO;2
[4] Bergeron, Y., Cyr, D., Drever, R., Flannigan, M., Gauthier, S., Kneeshaw, D., Lauzon, E., Leduc, A., Le Goff, H., Lesieur, D., & Logan, K. (2006). Past, current, and future fire frequencies in Quebec’s commercial forests: Implications for the cumulative effects of harvesting and fire on age-class structure and natural disturbance-based management. Canadian Journal of Forest Research, 36, 2737-2744. doi:10.1139/x06-177
[5] Chen, H. Y. H., & Popadiouk, R. V. (2002). Dynamics of North American boreal mixedwoods. Environmental Reviews, 10, 137-166. doi:10.1139/a02-007
[6] Dansereau, P. (1954). Climax vegetation and the regional shift of controls. Ecology, 35, 575-579. doi:10.2307/1931048
[7] Dupont, A., Belanger, L., & Bousquet, J. (1991). Relationships between balsam fir vulnerability to spruce budworm and ecological site conditions of fir stands in central Quebec. Canadian Journal of Forest Research, 21, 1752-1759. doi:10.1139/x91-242
[8] Elliott, K. J., Hitchcock, H. L., & Krueger, L. (2002). Vegetation response to large scale disturbance in a southern Appalachian forest: Hurricane Opal and salvage logging. Journal of the Torrey Botanical Society, 129, 48-59. doi:10.2307/3088682
[9] Environment Canada (2004). Canadian climate normals or averages 1971-2000. URL (last checked 24 July 2006). http://climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html
[10] Gray, A. N., & Spies, T. A. (1997). Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology, 78, 2458-2473. doi:10.1890/0012-9658(1997)078[2458:MCOTSE]2.0.CO;2
[11] Gray, A. N., Zald, H. S. J., Kern, R. A., & North, M. (2005). Stand conditions associated with tree regeneration in sierran mixed-conifer forests. Forest Science, 51, 198-210.
[12] Gromtsev, A. (2002). Natural disturbance dynamics in the boreal forests of European Russia: A review. Silva Fennica, 36, 41-55.
[13] Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1-9.
[14] Hart, S. A., & Chen, H. Y. H. (2006). Understory vegetation dynamics of North American boreal forests. Critical Reviews in Plant Sciences, 25, 381-397. doi:10.1080/07352680600819286
[15] Hillebrand, H., & Blenckner, T. (2002). Regional and local impact on species diversity—From pattern to process. Oecologia, 132, 479-491. doi:10.1007/s00442-002-0988-3
[16] Huebner, C. D., & Vankat, J. L. (2003). The importance of environment vs. disturbance in the vegetation mosaic of Central Arizona. Journal of Vegetation Science, 14, 25-34. doi:10.1111/j.1654-1103.2003.tb02124.x
[17] Imbeau, L., & Desrochers, A. (2002). Foraging ecology and use of drumming trees by three-toed woodpeckers. Journal of Wildlife Management, 66, 222-231. doi:10.2307/3802888
[18] Krasny, M. E., & Whitmore, M. C. (1992). Gradual and sudden forest canopy gaps in Allegheny northern hardwood forests. Canadian Journal of Forest Research, 22, 139-143. doi:10.1139/x92-019
[19] Krebs, C. J. (1989). Ecological methodology. New York, NY: Harper and Row Publishers Inc., 654 p.
[20] Kuuluvainen, T., & Juntunen, P. (1998). Seedling establishment in relation to microhabitat variation in a windthrow gap in a boreal Pinus sylvestris forest. Journal of Vegetation Science, 9, 551-562. doi:10.2307/3237271
[21] Lenoir, J., Gégout, J.-C., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N. E., Dullinger, S., Pauli, H., Willner, W., Grytnes, J.-A., Virtanen, R., & Svenning, J.-C. (2010) Crossscale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges. PLoS ONE, 5, e15734. doi:10.1371/journal.pone.0015734
[22] McGuire, A. D., Wirth, C., Apps, M., Beringer, J., Clein, J., Epstein, H., Kicklighter, D. W., Bhatti, J., Chapin III, F. S., de Groot, B., Efremov, D., Eugster, W., Fukuda, M., Gower, T., Hinzman, L., Huntley, B., Jia, G. J., Kasischke, E., Melillo, J., Romanovsky, V., Shvidenko, A., Vaganov, E., & Walker, D. (2002). Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. Journal of Vegetation Science, 13, 301-314. doi:10.1111/j.1654-1103.2002.tb02055.x
[23] Messaoud, Y., Bergeron, Y., & Leduc, A. (2007). Ecological factors explaining the location of the boundary between the mixedwood and coniferous bioclimatic zones in the boreal biome of eastern North America. Global Ecology and Biogeography, 16, 90-102. doi:10.1111/j.1466-8238.2006.00277.x
[24] Morin, H. (1994). Dynamics of balsam fir forests in relation to spruce budworm outbreaks in the boreal zone of Quebec. Canadian Journal of Forest Research, 24, 730-741. doi:10.1139/x94-097
[25] Morin, H., Laprise, D., Simard, A.-A., & Amouch, S. (2008). Régime des épidémies de la Tordeuse des bourgeons de l’épinette dans l’Est de l’Amérique du Nord. In Aménagement écosystemique en forêt boréale (pp. 165-192). Quebec: University of Quebec Press.
[26] MRNQ. (2003). Ministère des resources naturelles du Quebec. URL (last checked 24 July 2006). http://www.mrn.gouv.qc.ca
[27] Nagel, T. A., & Diaci, J. (2006). Intermediate wind disturbance in an old-growth beech-fir forest in southwestern Slovenia. Canadian Journal of Forest Research, 36, 629-638. doi:10.1139/x05-263
[28] Neilson, R. P., King, G. A., De Velice, R. L., & Lenihan, J. M. (1992). Regional and local vegetation patterns: The responses of vegetation diversity to subcontinental air masses. In Ecological Studies 92: Landscape boundaries: consequences for biotic diversity and ecological flows (pp. 129-149). New York: Springer-Verlag.
[29] Novotny, V., & Weiblen, D. B. (2005). From communities to continents: beta diversity of herbivorous insects. Annales Zoologici Fennici, 42, 463-475.
[30] Osumi, K., Ikeda, S., & Okamoto, T. (2003). Vegetation patterns and their dependency on site conditions in the pre-industrial landscape on north-eastern Japan. Ecological Research, 18, 753-765. doi:10.1111/j.1440-1703.2003.00593.x
[31] Palmer, M., & White, P. S. (1994). Scale dependence and the speciesarea relationship. American Naturalist, 144, 717-740. doi:10.1086/285704
[32] Peterson, C. J. (2000). Catastrophic wind damage to North American forests and the potential impact of climate change. The Science of the Total Environment, 262, 287-311. doi:10.1016/S0048-9697(00)00529-5
[33] Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144. doi:10.1016/0022-5193(66)90013-0
[34] Qian, H., & Ricklefs, R. E. (2007). A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecology Letters, 10, 737-744. doi:10.1111/j.1461-0248.2007.01066.x
[35] Reyes, G., & Kneeshaw, D. (2008). Moderate-severity disturbance dynamics in Abies balsamea-Betula spp. forests: The relative importance of disturbance type and local stand and site characteristics on woody vegetation response. Ecoscience, 15, 241-249. doi:10.2980/15-2-3082
[36] Reyes, G., Kneeshaw, D., De Grandpré, L., & Leduc, A. (2010). Changes in woody vegetation abundance and diversity after natural disturbances causing different levels of mortality. Journal of Vegetation Science, 21, 406-417. doi:10.1111/j.1654-1103.2009.01152.x
[37] Robitaille, A., & Saucier, J. P. (1998). Paysages régionaux du Québec méridional. Québec: Les Publications du Québec.
[38] Rodriguez-Garcia, E., Gratzer, G., & Bravo, F. (2011). Climatic variability and other site factor influences on natural regeneration of Pinus pinaster Ait. in Mediterranean forests. Annals of Forest Science, 68, 811-823. doi:10.1007/s13595-011-0078-y
[39] Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.
[40] SPSS Inc. (1999). Professional base system software for statistical analysis (v.10.0). Chicago, Illinois: SPSS Inc.
[41] terBraak, C. J. F. & Smilauer, P. (1998). CANOCO reference manual and user’s guide to CANOCO for windows: Software for canonical community ordination (Version 4.02). New York: Microcomputer Power, Ithaca.
[42] Turner, M. G., Dale, V. H., & Everham III, E. H. (1997). Crown fires, hurricanes, and volcanoes: A comparison among large-scale disturbances. BioScience, 47, 758-768. doi:10.2307/1313098
[43] van den Wollenberg, A. L. (1977). Redundancy analysis: An alternative for canonical correlation analysis. Psychometrika, 42, 207-219. doi:10.1007/BF02294050
[44] Veblen, T. T., & Ashton, D. H. (1978). Catastrophic influences on the vegetation of the Valdivian Andes, Chile. Vegetatio, 36, 149-167. doi:10.1007/BF02342598
[45] Wang, X.-P., Tang, Z.-Y., & Fang, J. Y. (2006). Climatic control on forests and tree species distribution in the forest region of northeast China. Journal of Integrative Plant Biology, 48, 778-789. doi:10.1111/j.1744-7909.2006.00294.x
[46] Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338. doi:10.2307/1943563
[47] Wimberly, M. C., & Spies, T. A. (2001). Influences of environment and disturbance on forest patterns in coastal Oregon watersheds. Ecology, 82, 1443-1459. doi:10.1890/0012-9658(2001)082[1443:IOEADO]2.0.CO;2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.